Warning: file_put_contents(aCache/aDaily/post/bigdatai/-1073-1074-1075-1076-1077-1078-1079-1080-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Big Data AI@bigdatai P.1077
BIGDATAI Telegram 1077
Forwarded from Machinelearning
🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml
2🔥2



tgoop.com/bigdatai/1077
Create:
Last Update:

🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml

BY Big Data AI











Share with your friend now:
tgoop.com/bigdatai/1077

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? “[The defendant] could not shift his criminal liability,” Hui said. The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail.
from us


Telegram Big Data AI
FROM American