BIGDATA_IR Telegram 362
چرا دریافت نتایج کوئری گاهی اینقدر طول می‌کشد؟

با پیشرفت روزافزون فناوری دیتابیس‌ها، ضروری است که روش‌ها و پروتکل‌های انتقال داده نیز به‌روزرسانی شوند تا بتوان از تمامی ظرفیت و توان پردازشی این سیستم‌ها به‌طور مؤثر بهره‌برداری کرد.

فرض کنید به عنوان یک تحلیلگر داده، با استفاده از درایور ODBC به ClickHouse متصل شده‌اید و دستوری برای بازیابی ۱۰ هزار رکورد خاص اجرا کرده‌اید. دستور را ارسال می‌کنید و منتظر نتایج می‌مانید، اما متوجه می‌شوید که زمان دریافت نتایج به طرز معناداری بیشتر از زمانی است که همان دستور را مستقیماً در خط فرمان ClickHouse اجرا کرده‌اید. 😕 این تفاوت زمانی از کجا می‌آید و چرا برای کاربرانی مثل شما که با داده‌های بزرگ کار می‌کنید، مهم است؟

دلیل اصلی این کندی، به نحوه عملکرد درایورهای سنتی مانند ODBC برمی‌گردد. ClickHouse یک دیتابیس تحلیلی است که از ذخیره‌سازی ستونی استفاده می‌کند—ساختاری که برای پردازش سریع داده‌های حجیم بهینه شده است. اما درایورهای ODBC برای دیتابیس‌های ردیفی طراحی شده‌اند و مجبورند داده‌های ستونی را به فرمت ردیفی تبدیل کنند. این تبدیل، هم زمان‌بر است و هم منابع زیادی مصرف می‌کند، که نتیجه‌اش کاهش عملکرد و تأخیر در دریافت داده‌هاست. برای تحلیلگران داده، مهندسین داده و دانشمندان داده که به سرعت و کارایی وابسته هستند، این یک چالش جدی است.

🚀 فرمت Arrow: استانداردی برای پردازش سریع داده‌های تحلیلی
سال‌هاست که Apache Arrow به عنوان یک فرمت درون حافظه برای کار با داده‌های ستونی، به یک استاندارد رایج برای پردازش سریع و بهینه داده‌های تحلیلی تبدیل شده است. Arrow با طراحی خاص خود، سربار ناشی از تبدیل داده‌ها بین فرمت‌های مختلف را حذف می‌کند و امکان پردازش موازی را فراهم می‌آورد. این یعنی شما می‌توانید داده‌های بزرگ را با سرعت بیشتری تحلیل کنید. 📊 این فرمت با ابزارهای محبوبی مثل Pandas، Apache Spark و Dask سازگار است و به همین دلیل، برای جامعه داده به یک انتخاب ایده‌آل تبدیل شده است.

حالا تصور کنید اگر بتوانید همین سرعت و کارایی را مستقیماً در ارتباط با دیتابیس‌ داشته باشید. ADBC دقیقا با همین هدف و توسط پروژه محبوب Arrow توسعه داده شد.

🌟 کتابخانه ADBC: راهکاری مدرن برای ارتباط سریع با دیتابیس‌ها
اینجاست که ADBC (Arrow Database Connectivity) وارد می‌شود! ADBC یک رابط برنامه‌نویسی کاربردی (API) مدرن است که به شما اجازه می‌دهد داده‌ها را به صورت مستقیم و در فرمت ستونی از دیتابیس‌هایی مثل ClickHouse یا حتی پستگرس دریافت کنید. با ADBC، دیگر نیازی به تبدیل‌های وقت‌گیر به فرمت ردیفی نیست—داده‌ها با همان ساختار ستونی که برای تحلیل بهینه است، به اپلیکیشن شما منتقل می‌شوند. 🚄

🎯 مزایای ADBC برای تحلیلگران و مهندسین داده
- سرعت بیشتر: حذف تبدیل‌های ردیفی، زمان دریافت داده‌ها را به شدت کاهش می‌دهد.
- پشتیبانی از استریمینگ: داده‌ها به صورت پیوسته و بدون وقفه منتقل می‌شوند.
- انعطاف‌پذیری: با دیتابیس‌های مختلف، از ClickHouse تا PostgreSQL، کار می‌کند.
- اکوسیستم کامل: یک API یکپارچه با ابزارهایی مثل Flight SQL که کار توسعه و کاربرد آنرا ساده‌تر می‌کنند.

برای پروژه‌های تحلیلی که زمان و دقت در آن‌ها حرف اول را می‌زند، تفاوت سرعت ناشی از به کار گیری ADBC برای اتصال به دیتابیس‌ها می‌تواند بهره‌وری شما را متحول کند. 📈
نکته مهم دیگری که باید اشاره شود این است که حتی برای دیتابیس‌های کلاسیک، اگر قصد دریافت حجم زیاد دیتا برای پردازش با ابزارهایی مانند پانداز یا polars را دارید، باز هم ADBC بهینه‌تر است. مثال موجود در شکل این پست هم در همین راستاست.

#DataEngineering #Database #ADBC #ApacheArrow #BigData #PerformanceOptimization #DuckDB #PostgreSQL


منبع : https://arrow.apache.org/blog/2025/02/28/data-wants-to-be-free/



tgoop.com/bigdata_ir/362
Create:
Last Update:

چرا دریافت نتایج کوئری گاهی اینقدر طول می‌کشد؟

با پیشرفت روزافزون فناوری دیتابیس‌ها، ضروری است که روش‌ها و پروتکل‌های انتقال داده نیز به‌روزرسانی شوند تا بتوان از تمامی ظرفیت و توان پردازشی این سیستم‌ها به‌طور مؤثر بهره‌برداری کرد.

فرض کنید به عنوان یک تحلیلگر داده، با استفاده از درایور ODBC به ClickHouse متصل شده‌اید و دستوری برای بازیابی ۱۰ هزار رکورد خاص اجرا کرده‌اید. دستور را ارسال می‌کنید و منتظر نتایج می‌مانید، اما متوجه می‌شوید که زمان دریافت نتایج به طرز معناداری بیشتر از زمانی است که همان دستور را مستقیماً در خط فرمان ClickHouse اجرا کرده‌اید. 😕 این تفاوت زمانی از کجا می‌آید و چرا برای کاربرانی مثل شما که با داده‌های بزرگ کار می‌کنید، مهم است؟

دلیل اصلی این کندی، به نحوه عملکرد درایورهای سنتی مانند ODBC برمی‌گردد. ClickHouse یک دیتابیس تحلیلی است که از ذخیره‌سازی ستونی استفاده می‌کند—ساختاری که برای پردازش سریع داده‌های حجیم بهینه شده است. اما درایورهای ODBC برای دیتابیس‌های ردیفی طراحی شده‌اند و مجبورند داده‌های ستونی را به فرمت ردیفی تبدیل کنند. این تبدیل، هم زمان‌بر است و هم منابع زیادی مصرف می‌کند، که نتیجه‌اش کاهش عملکرد و تأخیر در دریافت داده‌هاست. برای تحلیلگران داده، مهندسین داده و دانشمندان داده که به سرعت و کارایی وابسته هستند، این یک چالش جدی است.

🚀 فرمت Arrow: استانداردی برای پردازش سریع داده‌های تحلیلی
سال‌هاست که Apache Arrow به عنوان یک فرمت درون حافظه برای کار با داده‌های ستونی، به یک استاندارد رایج برای پردازش سریع و بهینه داده‌های تحلیلی تبدیل شده است. Arrow با طراحی خاص خود، سربار ناشی از تبدیل داده‌ها بین فرمت‌های مختلف را حذف می‌کند و امکان پردازش موازی را فراهم می‌آورد. این یعنی شما می‌توانید داده‌های بزرگ را با سرعت بیشتری تحلیل کنید. 📊 این فرمت با ابزارهای محبوبی مثل Pandas، Apache Spark و Dask سازگار است و به همین دلیل، برای جامعه داده به یک انتخاب ایده‌آل تبدیل شده است.

حالا تصور کنید اگر بتوانید همین سرعت و کارایی را مستقیماً در ارتباط با دیتابیس‌ داشته باشید. ADBC دقیقا با همین هدف و توسط پروژه محبوب Arrow توسعه داده شد.

🌟 کتابخانه ADBC: راهکاری مدرن برای ارتباط سریع با دیتابیس‌ها
اینجاست که ADBC (Arrow Database Connectivity) وارد می‌شود! ADBC یک رابط برنامه‌نویسی کاربردی (API) مدرن است که به شما اجازه می‌دهد داده‌ها را به صورت مستقیم و در فرمت ستونی از دیتابیس‌هایی مثل ClickHouse یا حتی پستگرس دریافت کنید. با ADBC، دیگر نیازی به تبدیل‌های وقت‌گیر به فرمت ردیفی نیست—داده‌ها با همان ساختار ستونی که برای تحلیل بهینه است، به اپلیکیشن شما منتقل می‌شوند. 🚄

🎯 مزایای ADBC برای تحلیلگران و مهندسین داده
- سرعت بیشتر: حذف تبدیل‌های ردیفی، زمان دریافت داده‌ها را به شدت کاهش می‌دهد.
- پشتیبانی از استریمینگ: داده‌ها به صورت پیوسته و بدون وقفه منتقل می‌شوند.
- انعطاف‌پذیری: با دیتابیس‌های مختلف، از ClickHouse تا PostgreSQL، کار می‌کند.
- اکوسیستم کامل: یک API یکپارچه با ابزارهایی مثل Flight SQL که کار توسعه و کاربرد آنرا ساده‌تر می‌کنند.

برای پروژه‌های تحلیلی که زمان و دقت در آن‌ها حرف اول را می‌زند، تفاوت سرعت ناشی از به کار گیری ADBC برای اتصال به دیتابیس‌ها می‌تواند بهره‌وری شما را متحول کند. 📈
نکته مهم دیگری که باید اشاره شود این است که حتی برای دیتابیس‌های کلاسیک، اگر قصد دریافت حجم زیاد دیتا برای پردازش با ابزارهایی مانند پانداز یا polars را دارید، باز هم ADBC بهینه‌تر است. مثال موجود در شکل این پست هم در همین راستاست.

#DataEngineering #Database #ADBC #ApacheArrow #BigData #PerformanceOptimization #DuckDB #PostgreSQL


منبع : https://arrow.apache.org/blog/2025/02/28/data-wants-to-be-free/

BY مهندسی داده




Share with your friend now:
tgoop.com/bigdata_ir/362

View MORE
Open in Telegram


Telegram News

Date: |

The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. The Channel name and bio must be no more than 255 characters long SUCK Channel Telegram In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option. Image: Telegram.
from us


Telegram مهندسی داده
FROM American