BIG_DATA_SYSTEMS_ANALYSIS Telegram 158
Загрузка данных в хранилище: полная, инкрементальная и частичная перезагрузка

Что самое главное в DWH? Конечно же, данные, которые как-то должны попасть в хранилище. Чаще мы используем современные методы загрузки, но на ранних этапах или из-за тех. ограничений, или при исследованиях, мы всё также прибегаем к классическим методам.

Есть три основных подхода: полная загрузка, инкрементальная и частичная перезагрузка. Системным аналитикам важно понимать когда какой подход лучше использовать.

При полной загрузке мы каждый раз заново забираем все данные из источника, полностью заменяя существующие данные в хранилище. Почему "полностью" курсивом? Иногда нам нужно отслеживать удалённые строки, тогда мы не просто транкейтим, а размечаем отсутствующие строки флагом DELETED.

Полная загрузка — самый простой метод со своими особенностями:
простота реализации
100% актуальность данных
высокая нагрузка при больших объемах данных
время выполнения
неэффективное использование ресурсов при небольших изменениях.

Этот метод идеален для небольших таблиц или когда нужна полная уверенность в актуальности данных. Также он хорошо подходит для справочников и других статичных данных, которые обновляются очень редко (обратите внимание, что редко определяется требованиями конкретного бизнеса).


При инкрементальном методе мы добавляем только новые или измененные данные с момента последней загрузки. Это существенно экономит время и ресурсы. Особенности:
быстрее
меньше нагрузка на источник и хранилище
эффективное использование ресурсов
сложность реализации и отслеживания изменений
риск пропустить изменения
нужно хранить метаданные о загрузках.

Для больших таблиц с частыми апдейтами — то, что надо. Важно❗️если нужно отслеживать изменения, у таблиц должно быть поле, содержащее дату и время обновления строки. Убедитесь, что вы можете доверять ему. Комментарии к полям могут врать! В моей практике были случаи, когда дата содержала инфу об изменении только нескольких полей из таблицы, что не было нигде явно указано 🥲 (да, иногда нужно покапаться в коде источника)

Также важно помнить, что если в таблице удалили какую-то строку, то вы никогда об этом не узнаете, ведь вы забираете изменения только по существующим строкам.

Если мы говорим только про забор новых изменений, нам нужно инкрементное поле или поле с датой добавления строки (желательно заполняемое getdate), по которому мы будем забирать только новые строки. Метод отлично подходит для логов.


Частичная перезагрузка — гибрид предыдущих способов. Здесь мы перезагружаем только часть данных, обычно за какой-то конкретный период.
баланс актуальности и эффективности
обновление за определенный период без полной перезагрузки
удобно для данных с "окном актуальности"
сложно определить оптимальный период
риск дублей при неправильной реализации
нужна дополнительная логика для определения границ загрузки

Частичную перезагрузку часто применяют для данных с "окном актуальности", например, когда нужно обновить данные за последний месяц или квартал. Когда точно известно, что "более старые" данные неизменны. Здесь та же история, про которую я писала выше, у вас должно быть поле с датой, которому вы точно можете доверять.


Подытожу, выбор метода загрузки зависит от многих факторов: объема данных, частоты обновлений, требований к актуальности и доступных ресурсов. Но даже если на первый взгляд кажется, что выбрать нужный метод просто, в реальной жизни часто приходится идти на компромиссы или комбинировать подходы. Например, объект с миллионами строк без даты обновления можно днем грузить инкрементально, а раз в неделю обновлять целиком. Так себе история и, конечно, лучше использовать иные методы загрузки, но ситуации бывают разными. Будьте к ним готовы.

Благодаря тому, что источники не идеальны, работа системного аналитика всегда где-то на грани творчества и здравого смысла 😇

#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/big_data_systems_analysis/158
Create:
Last Update:

Загрузка данных в хранилище: полная, инкрементальная и частичная перезагрузка

Что самое главное в DWH? Конечно же, данные, которые как-то должны попасть в хранилище. Чаще мы используем современные методы загрузки, но на ранних этапах или из-за тех. ограничений, или при исследованиях, мы всё также прибегаем к классическим методам.

Есть три основных подхода: полная загрузка, инкрементальная и частичная перезагрузка. Системным аналитикам важно понимать когда какой подход лучше использовать.

При полной загрузке мы каждый раз заново забираем все данные из источника, полностью заменяя существующие данные в хранилище. Почему "полностью" курсивом? Иногда нам нужно отслеживать удалённые строки, тогда мы не просто транкейтим, а размечаем отсутствующие строки флагом DELETED.

Полная загрузка — самый простой метод со своими особенностями:
простота реализации
100% актуальность данных
высокая нагрузка при больших объемах данных
время выполнения
неэффективное использование ресурсов при небольших изменениях.

Этот метод идеален для небольших таблиц или когда нужна полная уверенность в актуальности данных. Также он хорошо подходит для справочников и других статичных данных, которые обновляются очень редко (обратите внимание, что редко определяется требованиями конкретного бизнеса).


При инкрементальном методе мы добавляем только новые или измененные данные с момента последней загрузки. Это существенно экономит время и ресурсы. Особенности:
быстрее
меньше нагрузка на источник и хранилище
эффективное использование ресурсов
сложность реализации и отслеживания изменений
риск пропустить изменения
нужно хранить метаданные о загрузках.

Для больших таблиц с частыми апдейтами — то, что надо. Важно❗️если нужно отслеживать изменения, у таблиц должно быть поле, содержащее дату и время обновления строки. Убедитесь, что вы можете доверять ему. Комментарии к полям могут врать! В моей практике были случаи, когда дата содержала инфу об изменении только нескольких полей из таблицы, что не было нигде явно указано 🥲 (да, иногда нужно покапаться в коде источника)

Также важно помнить, что если в таблице удалили какую-то строку, то вы никогда об этом не узнаете, ведь вы забираете изменения только по существующим строкам.

Если мы говорим только про забор новых изменений, нам нужно инкрементное поле или поле с датой добавления строки (желательно заполняемое getdate), по которому мы будем забирать только новые строки. Метод отлично подходит для логов.


Частичная перезагрузка — гибрид предыдущих способов. Здесь мы перезагружаем только часть данных, обычно за какой-то конкретный период.
баланс актуальности и эффективности
обновление за определенный период без полной перезагрузки
удобно для данных с "окном актуальности"
сложно определить оптимальный период
риск дублей при неправильной реализации
нужна дополнительная логика для определения границ загрузки

Частичную перезагрузку часто применяют для данных с "окном актуальности", например, когда нужно обновить данные за последний месяц или квартал. Когда точно известно, что "более старые" данные неизменны. Здесь та же история, про которую я писала выше, у вас должно быть поле с датой, которому вы точно можете доверять.


Подытожу, выбор метода загрузки зависит от многих факторов: объема данных, частоты обновлений, требований к актуальности и доступных ресурсов. Но даже если на первый взгляд кажется, что выбрать нужный метод просто, в реальной жизни часто приходится идти на компромиссы или комбинировать подходы. Например, объект с миллионами строк без даты обновления можно днем грузить инкрементально, а раз в неделю обновлять целиком. Так себе история и, конечно, лучше использовать иные методы загрузки, но ситуации бывают разными. Будьте к ним готовы.

Благодаря тому, что источники не идеальны, работа системного аналитика всегда где-то на грани творчества и здравого смысла 😇

#dwh

BY В мире больших данных


Share with your friend now:
tgoop.com/big_data_systems_analysis/158

View MORE
Open in Telegram


Telegram News

Date: |

It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Administrators The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar.
from us


Telegram В мире больших данных
FROM American