BIG_DATA_SYSTEMS_ANALYSIS Telegram 137
Batch vs Streaming: два пути к эффективной обработке данных

В мире больших данных batch и streaming — два ключевых метода загрузки и обработки, которые определяют, как информация движется и трансформируется внутри системы.

Сама суть понятий кроется в их названии: batch - пачка, streaming — поток. На этом можно было и остановиться, но всё же давайте разберемся, чем они отличаются и в каких случаях что лучше применять.

При batch загрузке мы собираем данные в большие пачки и обрабатываем их все вместе. Отлично подходит, если нам не нужны мгновенные результаты. Например, для составления ежемесячных отчетов по продажам или анализа поведения пользователей за прошедший квартал.

Плюсы batch загрузки:
+ Эффективно работает с большими объемами данных
+ Экономит ресурсы, так как обработка идет в определенное время (особенно актуально для облаков, где оплата за время использование ресурсов)
+ Подходит для сложных вычислений, которые требуют много времени

Минусы:
- Задержка между сбором данных и получением результатов
- Не подходит для задач, требующих мгновенной реакции

Streaming подход обрабатывает каждую единицу данных сразу, как только она появляется. Идеально подходит для задач, где важно получать данные мгновенно. Например, для мониторинга состояния оборудования в реальном времени.

Плюсы streaming обработки:
+ Мгновенное (ну почти) появление данных
+ Возможность быстро реагировать на события

Минусы:
- Требует больше ресурсов
- Сложнее реализовать для некоторых типов анализа

Возникает логичный вопрос что и когда использовать? Но универсального ответа нет. Выбор между пакетной и потоковой обработкой целиком зависит от ваших задач и ресурсов и в этом состоит работа системного аналитика — выбрать лучший подход для каждого конкретного случая.

Банки используют streaming загрузку в DWH для быстрого обновления данных. Информация о переводах и покупках клиентов попадает в хранилище почти мгновенно. Это дает аналитикам самую свежую картину активности клиентов. В тоже время менее критичные данные могут собираться из ERP и CRM систем раз в день.

Для batch обработки часто используют Apache Hadoop, Apache Spark или самописные репликаторы. Для streaming популярны Apache Kafka, Apache Flink и Google Cloud Dataflow. О некоторых из этих инструментов я расскажу позднее.

#dwh
👍21



tgoop.com/big_data_systems_analysis/137
Create:
Last Update:

Batch vs Streaming: два пути к эффективной обработке данных

В мире больших данных batch и streaming — два ключевых метода загрузки и обработки, которые определяют, как информация движется и трансформируется внутри системы.

Сама суть понятий кроется в их названии: batch - пачка, streaming — поток. На этом можно было и остановиться, но всё же давайте разберемся, чем они отличаются и в каких случаях что лучше применять.

При batch загрузке мы собираем данные в большие пачки и обрабатываем их все вместе. Отлично подходит, если нам не нужны мгновенные результаты. Например, для составления ежемесячных отчетов по продажам или анализа поведения пользователей за прошедший квартал.

Плюсы batch загрузки:
+ Эффективно работает с большими объемами данных
+ Экономит ресурсы, так как обработка идет в определенное время (особенно актуально для облаков, где оплата за время использование ресурсов)
+ Подходит для сложных вычислений, которые требуют много времени

Минусы:
- Задержка между сбором данных и получением результатов
- Не подходит для задач, требующих мгновенной реакции

Streaming подход обрабатывает каждую единицу данных сразу, как только она появляется. Идеально подходит для задач, где важно получать данные мгновенно. Например, для мониторинга состояния оборудования в реальном времени.

Плюсы streaming обработки:
+ Мгновенное (ну почти) появление данных
+ Возможность быстро реагировать на события

Минусы:
- Требует больше ресурсов
- Сложнее реализовать для некоторых типов анализа

Возникает логичный вопрос что и когда использовать? Но универсального ответа нет. Выбор между пакетной и потоковой обработкой целиком зависит от ваших задач и ресурсов и в этом состоит работа системного аналитика — выбрать лучший подход для каждого конкретного случая.

Банки используют streaming загрузку в DWH для быстрого обновления данных. Информация о переводах и покупках клиентов попадает в хранилище почти мгновенно. Это дает аналитикам самую свежую картину активности клиентов. В тоже время менее критичные данные могут собираться из ERP и CRM систем раз в день.

Для batch обработки часто используют Apache Hadoop, Apache Spark или самописные репликаторы. Для streaming популярны Apache Kafka, Apache Flink и Google Cloud Dataflow. О некоторых из этих инструментов я расскажу позднее.

#dwh

BY В мире больших данных


Share with your friend now:
tgoop.com/big_data_systems_analysis/137

View MORE
Open in Telegram


Telegram News

Date: |

Add up to 50 administrators Read now How to Create a Private or Public Channel on Telegram? The court said the defendant had also incited people to commit public nuisance, with messages calling on them to take part in rallies and demonstrations including at Hong Kong International Airport, to block roads and to paralyse the public transportation system. Various forms of protest promoted on the messaging platform included general strikes, lunchtime protests and silent sit-ins. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces.
from us


Telegram В мире больших данных
FROM American