tgoop.com/big_data_systems_analysis/135
Last Update:
Путешествие по миру современных баз данных
Хочу рассказать о современных базах данных. Мир баз данных постоянно развивается, и сейчас у нас есть целый арсенал инструментов для различных целей. Разберемся с некоторыми из них.
Реляционные базы данных (RDBMS) — это классический вид, основанный на табличной модели. Идеальны для структурированной информации с четкими связями. Н-р, для банковских систем или управления заказами в интернет-магазине.
Фишка: поддерживают сложные запросы и гарантируют целостность данных.
Согласно отчету DB-Engines Ranking на сегодня, Oracle, MySQL и MS SQL остаются самыми популярными СУБД в мире.
══════════
NoSQL — предлагает подходы, отличные от стандартного реляционного шаблона. Они появились, когда стало ясно, что не все данные удобно хранить в таблицах. Эти СУБД бывают документоориентированные (MongoDB), ключ-значение (Redis), графовые (Neo4j). Они часто используются в веб-приложениях, системах реального времени или для работы с большими данными.
Фишка: легко масштабируются и быстро обрабатывают большие объемы данных.
MongoDB — самая популярная NoSQL база среди разработчиков по данным Stack Overflow Developer Survey 2023.
══════════
Колоночные базы данных — в них данные также организованы в таблицы, но хранятся по столбцам, а не по строкам. Отлично подходят для аналитики с большими объемами данных.
Фишка: молниеносно обрабатывают аналитические запросы на терабайтах данных.
Примеры таких СУБД: ClickHouse, Google BigQuery, Apache Cassandra.
══════════
NewSQL базы данных наследуют реляционную структуру и семантику, но построены с использованием более современных, масштабируемых конструкций, обеспечивая высокую масштабируемость и согласованность данных.
Фишка: могут обрабатывать тысячи транзакций в секунду, сохраняя при этом ACID-свойства.
Популярные системы: CockroachDB, Google Spanner, VoltDB. Они хорошо подходят для приложений, которым нужна высокая доступность и горизонтальная масштабируемость.
══════════
Многомодельные базы данных поддерживают несколько моделей данных в рамках одной системы. Они упрощают разработку сложных приложений, где нужны разные типы данных и связей между ними.
Фишка: позволяют использовать одну базу данных вместо нескольких, упрощая архитектуру приложения.
Пример: ArangoDB (работает с документами, графами и данные в формате ключ-значение).
══════════
Базы данных на основе блокчейна используют технологию распределенного реестра. Они обеспечивают высокую безопасность и неизменяемость данных.
Фишка: гарантируют прозрачность и защиту от несанкционированных изменений.
Примеры таких баз: BigchainDB, Bluzelle. Они популярны в финтехе, управлении цепочками поставок и других областях, где важна прозрачность и безопасность.
══════════
Хранилища данных и базы данных для аналитики оптимизированы для обработки огромных объемов данных и сложных аналитических запросов.
Фишка: быстро анализируют петабайты данных и предоставляют результаты в удобном виде для бизнес-аналитики и машинного обучения.
Примеры: Snowflake, Amazon Redshift, Google BigQuery.
══════════
In-Memory базы данных хранят данные в оперативной памяти, что обеспечивает молниеносную сверхвысокую скорость работы. Часто используются как кэш или для обработки данных в реальном времени, особенно в приложениях, требующих минимальной задержки.
Фишка: обеспечивают время отклика в микро- или даже наносекундах, что критично для таких приложений, как финансовые системы, системы интернет-рекламы и игровые платформы.
Самые известные представители: Redis, Memcached, SAP HANA (для более сложных аналитических задач), Apache Ignite (для распределенных вычислений и кэширования).
══════════
Как вы можете заметить, некоторые из известных вам СУБД хочется отнести к нескольким видам. И это важно понимать: границы между типами баз данных часто размыты. Многие современные СУБД сочетают черты разных типов, адаптируясь под сложные требования своих клиентов.
Признаюсь честно, пока писала эту статью, узнала о нескольких новых для себя видах. А вы? С чем приходилось работать?
#databasedesign #dwh