Notice: file_put_contents(): Write of 8859 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 17051 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Bias Variance@biasvariance_ir P.397
BIASVARIANCE_IR Telegram 397
دکتر بنجیو چند روز پیش مقاله جالبی در زمینه‌ی توجه ارایه کردند که شاید مثل مقاله‌ی سال 2014 که انقلابی در زمینه‌ی توجه و شبکه‌های بازگشتی به راه انداخت، مهم باشد. اگر مقایسه کنیم، این مقاله پس‌زمینه‌ی ریاضی بهتری دارد.

Constant Memory Attention Block

Modern foundation model architectures rely on attention mechanisms to effectively capture context. However, these methods require linear or quadratic memory in terms of the number of inputs/datapoints, limiting their applicability in lowcompute domains. In this work, we propose Constant Memory Attention Block (CMAB), a novel general-purpose attention block that computes its output in constant memory and performs updates in constant computation. Highlighting CMABs efficacy, we introduce methods for Neural Processes and Temporal Point Processes. Empirically, we show our proposed methods achieve results competitive with state-of-the-art while being significantly more memory efficient.

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
#یادگیری_عمیق #شبکه_عصبی #معرفی_مقاله #توجه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
پشتیبانی | کانال | سایت | اینستاگرام | آپارات



tgoop.com/biasvariance_ir/397
Create:
Last Update:

دکتر بنجیو چند روز پیش مقاله جالبی در زمینه‌ی توجه ارایه کردند که شاید مثل مقاله‌ی سال 2014 که انقلابی در زمینه‌ی توجه و شبکه‌های بازگشتی به راه انداخت، مهم باشد. اگر مقایسه کنیم، این مقاله پس‌زمینه‌ی ریاضی بهتری دارد.

Constant Memory Attention Block

Modern foundation model architectures rely on attention mechanisms to effectively capture context. However, these methods require linear or quadratic memory in terms of the number of inputs/datapoints, limiting their applicability in lowcompute domains. In this work, we propose Constant Memory Attention Block (CMAB), a novel general-purpose attention block that computes its output in constant memory and performs updates in constant computation. Highlighting CMABs efficacy, we introduce methods for Neural Processes and Temporal Point Processes. Empirically, we show our proposed methods achieve results competitive with state-of-the-art while being significantly more memory efficient.

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
#یادگیری_عمیق #شبکه_عصبی #معرفی_مقاله #توجه
ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
پشتیبانی | کانال | سایت | اینستاگرام | آپارات

BY Bias Variance


Share with your friend now:
tgoop.com/biasvariance_ir/397

View MORE
Open in Telegram


Telegram News

Date: |

3How to create a Telegram channel? Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots.
from us


Telegram Bias Variance
FROM American