Notice: file_put_contents(): Write of 10542 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 18734 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Bias Variance@biasvariance_ir P.37
BIASVARIANCE_IR Telegram 37
در مقالات اخیر بحثی مطرح شده است که زمینه مناسبی برای فعالیت در حوزه یادگیری عمیق برای نوشتن پایان نامه و مقاله است. Vision Transformer بیان می کند که می توانیم از transformer ها که در NLP استفاده می شوند در حوزه computer vision استفاده کنیم. مقاله Searching for Efficient Multi-Stage Vision Transformers که اخیرا نگاشته شده است مربوط به این حوزه است. کد این مقاله متن باز است که می توانید در اینجا مشاهده کنید.

Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT.

لینک مقاله


#معرفی_مقاله #یادگیری_عمیق #transformer #پیشنهاد_موضوع

🌴 سایت | 🌺 کانال | 🌳 پشتیبانی



tgoop.com/biasvariance_ir/37
Create:
Last Update:

در مقالات اخیر بحثی مطرح شده است که زمینه مناسبی برای فعالیت در حوزه یادگیری عمیق برای نوشتن پایان نامه و مقاله است. Vision Transformer بیان می کند که می توانیم از transformer ها که در NLP استفاده می شوند در حوزه computer vision استفاده کنیم. مقاله Searching for Efficient Multi-Stage Vision Transformers که اخیرا نگاشته شده است مربوط به این حوزه است. کد این مقاله متن باز است که می توانید در اینجا مشاهده کنید.

Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT.

لینک مقاله


#معرفی_مقاله #یادگیری_عمیق #transformer #پیشنهاد_موضوع

🌴 سایت | 🌺 کانال | 🌳 پشتیبانی

BY Bias Variance




Share with your friend now:
tgoop.com/biasvariance_ir/37

View MORE
Open in Telegram


Telegram News

Date: |

A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail. Add up to 50 administrators Telegram desktop app: In the upper left corner, click the Menu icon (the one with three lines). Select “New Channel” from the drop-down menu. Telegram channels fall into two types:
from us


Telegram Bias Variance
FROM American