Notice: file_put_contents(): Write of 10148 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 18340 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Bias Variance@biasvariance_ir P.143
BIASVARIANCE_IR Telegram 143
شبکه های عمیق تبدیل به یک نام جایگزین برای شبکه های عصبی شده اند. با این حال افزایش عرض شبکه ها نیز تاثیرات خود را می تواند داشته باشد. از سویی، توزیع داده ها یکی از مواردی است که نقش بسیار مهمی در شبکه های عصبی دارد. چند روز پیش مقاله مهمی ارایه شد که می خوانیم:

Wide Neural Networks Forget Less Catastrophically

A growing body of research in continual learning is devoted to overcoming the “Catastrophic Forgetting” of neural networks by designing new algorithms that are more robust to the distribution shifts. While the recent progress in continual learning literature is encouraging, our understanding of what properties of neural networks contribute to catastrophic forgetting is still limited. To address this, instead of focusing on continual learning algorithms, in this work, we focus on the model itself and study the impact of “width” of the neural network architecture on catastrophic forgetting, and show that width has a surprisingly significant effect on forgetting. To explain this effect, we study the learning dynamics of the network from various perspectives such as gradient norm and sparsity, orthogonalization, and lazy training regime. We provide potential explanations that are consistent with the empirical results across different architectures and continual learning benchmarks.

لینک مقاله


#معرفی_مقاله #یادگیری_عمیق


🌴 سایت | 🌺 کانال | 🌳 پشتیبانی



tgoop.com/biasvariance_ir/143
Create:
Last Update:

شبکه های عمیق تبدیل به یک نام جایگزین برای شبکه های عصبی شده اند. با این حال افزایش عرض شبکه ها نیز تاثیرات خود را می تواند داشته باشد. از سویی، توزیع داده ها یکی از مواردی است که نقش بسیار مهمی در شبکه های عصبی دارد. چند روز پیش مقاله مهمی ارایه شد که می خوانیم:

Wide Neural Networks Forget Less Catastrophically

A growing body of research in continual learning is devoted to overcoming the “Catastrophic Forgetting” of neural networks by designing new algorithms that are more robust to the distribution shifts. While the recent progress in continual learning literature is encouraging, our understanding of what properties of neural networks contribute to catastrophic forgetting is still limited. To address this, instead of focusing on continual learning algorithms, in this work, we focus on the model itself and study the impact of “width” of the neural network architecture on catastrophic forgetting, and show that width has a surprisingly significant effect on forgetting. To explain this effect, we study the learning dynamics of the network from various perspectives such as gradient norm and sparsity, orthogonalization, and lazy training regime. We provide potential explanations that are consistent with the empirical results across different architectures and continual learning benchmarks.

لینک مقاله


#معرفی_مقاله #یادگیری_عمیق


🌴 سایت | 🌺 کانال | 🌳 پشتیبانی

BY Bias Variance




Share with your friend now:
tgoop.com/biasvariance_ir/143

View MORE
Open in Telegram


Telegram News

Date: |

With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. 4How to customize a Telegram channel? Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” 6How to manage your Telegram channel? Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you:
from us


Telegram Bias Variance
FROM American