tgoop.com/artificial_stupid/543
Last Update:
#management #ai
Сейчас смотрю всякие материалы для будущей диссертации. Набрел на интересную статью в fortune (лучше открывать в инкогнито). Там, конечно, много фантастики, но есть очень интересные идеи.
Итак, какие идеи показались интересными:
1. Создание "контекстных картриджей" (или "контекстных капсул"). Если коротко, то перевод экспертизы из неформального вида (где-то в голове) в фиксированные базы знаний. Насколько знаю, сейчас у коллег это частый (и сравнительно стандартный) процесс при разработке проекта. Казалось бы, идея простая, но мне нравится именно история про ограниченную специализированную "капсулу" знаний. Условно, мы засовываем знания по HR в такую "капсулу", что позволяет управлять контекстом нашего агента. Но если вдруг что-то нужно добавить, мы докидываем "капсулу" по юридическим вопросам, получаем микс для агента с промежуточной специализацией.
Это, конечно, красиво звучит, но как это грамотно делать - большой вопрос (привет, модное управление контекстом). И все же идея клевая. Что-то вроде "я знаю кунг-фу" из матрицы.
2. Прошлый пункт активнее заставляет управлять знаниями и потоками информации. А что еще интереснее - активнее переводить какое-то абстрактное "знание" (которое где-то в головах специалистов, или в их общении рождается, которое автор называет "племенным знанием") в более формальный вид. Что, кстати, соотносится с SECI моделью.
3. Но трансформируется не только передача и кристаллизация знания, но и роли в командах. Автор выделяет три роли:
Agent Bosses - что-то вроде технических менеджеров, которые управляют AI-агентами (задают роли, полномочия, способы коммуникации и т.п., но не строят и не поддерживают инфраструктуру сами)
Agent Evaluators - скорее технические специалисты, которые оценивают и операционализируют агентов (создают инфраструктуру для работы агентов)
Superhumans - доменные специалисты, которые за счет AI ускоряют свою работу (и могут понимать, где агенты косячат и что работает не так).
4. Классические организационные структуры не поспевают за техническими решениями. Потому нужно придумывать что-то новенькое (хотя тут я согласен лишь отчасти, нужно экспериментировать, возможно, что нужно не кардинальное изменение, а скорее "тюнинг" существующих структур с адаптацией под взаимодействие человек-ИИ).
В общем, статья не особо длинная, почитайте на досуге. Если знаете кейсы, как эти идеи уже сейчас работают - пишите в комментарии, мне это будет крайне полезно для работы над диссертацией ;)
BY Artificial stupidity
Share with your friend now:
tgoop.com/artificial_stupid/543
