ARTIFICIAL_STUPID Telegram 513
Forwarded from Data Secrets
Очень понравилась свежая статья "Be like a Goldfish, Don't Memorize!": исследователи из университета Мэриленда предлагают аналог дропаута для токенов

Проблема рассматривается следующая. LLM часто запоминают части тренировочного датасета и могут воспроизводить их дословно. И это приводит к ряду очень неприятных последствий: сюда все иски за авторские права, утечки конфиденциальных данных и лицензированного кода и прочее.

В общем, загвоздка достаточно значимая, и решать ее пытаются в основном через unlearning после обучения или Differential Privacy. И то и другое приводит к понижению точности и в целом не очень надежно работает.

Здесь авторы предлагают более фундаментальный подход. Интуиция: модель не сможет воспроизвести дословно последовательность, если часть токенов никогда не участвовала в вычислении ошибки.

А значит, мы можем случайным образом исключать часть токенов из лосс-функции на обратном проходе. Это и не очень сильно портит метрики, потому что общие закономерности языка модель все-равно выучивает, и на 100% исключает возможность дословного повторения текстов.

Формально процесс обучения остается ровно таким же, меняется только лосс. В него добавляется коэффициент G_i, который равен единице, если токен учитывается в бэкпропе, и нулю – если нет. Формулу шутливо назвали Goldfish Loss: по аналогии с рыбкой, которая тут же забывает то, что увидела секунду назад.

В итоге если при стандартном лоссе процент точных повторений выученных текстов – примерно 85%, то на Goldfish Loss – 0. И по качеству просаживается не сильно, нужно просто либо чуть больше данных, либо чуть больше шагов. Плюс, применять на всем датасете не обязательно, можно использовать только для чувствительных данных.

Изящно, скажите?

arxiv.org/pdf/2406.10209
❤‍🔥4🔥3



tgoop.com/artificial_stupid/513
Create:
Last Update:

Очень понравилась свежая статья "Be like a Goldfish, Don't Memorize!": исследователи из университета Мэриленда предлагают аналог дропаута для токенов

Проблема рассматривается следующая. LLM часто запоминают части тренировочного датасета и могут воспроизводить их дословно. И это приводит к ряду очень неприятных последствий: сюда все иски за авторские права, утечки конфиденциальных данных и лицензированного кода и прочее.

В общем, загвоздка достаточно значимая, и решать ее пытаются в основном через unlearning после обучения или Differential Privacy. И то и другое приводит к понижению точности и в целом не очень надежно работает.

Здесь авторы предлагают более фундаментальный подход. Интуиция: модель не сможет воспроизвести дословно последовательность, если часть токенов никогда не участвовала в вычислении ошибки.

А значит, мы можем случайным образом исключать часть токенов из лосс-функции на обратном проходе. Это и не очень сильно портит метрики, потому что общие закономерности языка модель все-равно выучивает, и на 100% исключает возможность дословного повторения текстов.

Формально процесс обучения остается ровно таким же, меняется только лосс. В него добавляется коэффициент G_i, который равен единице, если токен учитывается в бэкпропе, и нулю – если нет. Формулу шутливо назвали Goldfish Loss: по аналогии с рыбкой, которая тут же забывает то, что увидела секунду назад.

В итоге если при стандартном лоссе процент точных повторений выученных текстов – примерно 85%, то на Goldfish Loss – 0. И по качеству просаживается не сильно, нужно просто либо чуть больше данных, либо чуть больше шагов. Плюс, применять на всем датасете не обязательно, можно использовать только для чувствительных данных.

Изящно, скажите?

arxiv.org/pdf/2406.10209

BY Artificial stupidity






Share with your friend now:
tgoop.com/artificial_stupid/513

View MORE
Open in Telegram


Telegram News

Date: |

Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” How to create a business channel on Telegram? (Tutorial) Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” How to Create a Private or Public Channel on Telegram? 4How to customize a Telegram channel?
from us


Telegram Artificial stupidity
FROM American