ARTIFICIAL_STUPID Telegram 406
🚀 Если Вам интересно машинное обучение и/или математика - приглашаем Вас принять участие в проекте по применению методов МЛ/RL к теории групп/графов Кэли - напишите @alexander_v_c - если хотите принять участие, а также заходите на вводный вебинар (знаний теории групп не требуется):

👨‍🔬 Александр Червов (к.ф.-м.н) "Методы МЛ в теории групп - введение и обзор достигнутого"
⌚️ Понедельник 22 июля, 18.00 (по Москве)

Методы машинного обучения могут быть применены к ряду классических задач теории групп - разложение элемента по образующим, оценки диаметра. Мы приглашаем принять всех участие в данном проекте. Предварительное требование - знание Питона и наличие нескольких свободных часов в неделю. Если вы хотите улучшить свои знания по МЛ/RL и внести вклад в развитие науки - это отличный шанс .

В данном докладе мы простым языком объясним формулировки основных задач, и как задачи теории групп переводятся на язык машинного обучения. Предварительных знаний не требуется. Также, мы дадим обзор уже достигнутых результатов - в частности для группы порядка 4*10^19 (Rubik cube) нам уже удается находить решение задачи за минуты , а не 40 часов ГПУ как было в предыдущей работе "DeepCube".

План доклада:

1 Переформулировка основной задачи на простом языке матриц

2 Матрицы перестановок и группы типа кубика Рубика (см. ноутбук "Visualize allowed moves": https://www.kaggle.com/code/marksix/visualize-allowed-moves )

3 Графы Кэли и переформулировка основной задачи как поиск пути на графе

4 Случайные блуждания по графам - создание трейн сета для МЛ-модели

5 Подход к решению задач теории групп через машинное обучение. Оценка дистанции до цели через МЛ-модель и проблема наличия множественных локальных минимумов у этой оценки

6 Beam search. (Один из вариантов борьбы с застреваниями в локальных минимумах)

7 Бейзлайн реализация: МЛ+ Beam search - ноутбук: https://www.kaggle.com/code/alexandervc/baseline-1-for-permutations - решение кубика Рубика за пару минут

8 Cледующие шаги: RL-часть, улучшение нейросеток, улучшение трейн сета, улучшение beam search

Добавляйтесь в группу проекта: https://www.tgoop.com/sberlogasci/10989 и пишите @alexander_v_c - если Вам интересно !

PS

См. также предыдущий вводный доклад:
https://www.tgoop.com/sberlogasci/10989/15283 "Введение в методы поиска короткого пути на больших графах" (Кирилл Хоружий )

Zoom link will be in @sberlogabig just before start. Video records: https://www.youtube.com/c/SciBerloga - subscribe !
🔥31



tgoop.com/artificial_stupid/406
Create:
Last Update:

🚀 Если Вам интересно машинное обучение и/или математика - приглашаем Вас принять участие в проекте по применению методов МЛ/RL к теории групп/графов Кэли - напишите @alexander_v_c - если хотите принять участие, а также заходите на вводный вебинар (знаний теории групп не требуется):

👨‍🔬 Александр Червов (к.ф.-м.н) "Методы МЛ в теории групп - введение и обзор достигнутого"
⌚️ Понедельник 22 июля, 18.00 (по Москве)

Методы машинного обучения могут быть применены к ряду классических задач теории групп - разложение элемента по образующим, оценки диаметра. Мы приглашаем принять всех участие в данном проекте. Предварительное требование - знание Питона и наличие нескольких свободных часов в неделю. Если вы хотите улучшить свои знания по МЛ/RL и внести вклад в развитие науки - это отличный шанс .

В данном докладе мы простым языком объясним формулировки основных задач, и как задачи теории групп переводятся на язык машинного обучения. Предварительных знаний не требуется. Также, мы дадим обзор уже достигнутых результатов - в частности для группы порядка 4*10^19 (Rubik cube) нам уже удается находить решение задачи за минуты , а не 40 часов ГПУ как было в предыдущей работе "DeepCube".

План доклада:

1 Переформулировка основной задачи на простом языке матриц

2 Матрицы перестановок и группы типа кубика Рубика (см. ноутбук "Visualize allowed moves": https://www.kaggle.com/code/marksix/visualize-allowed-moves )

3 Графы Кэли и переформулировка основной задачи как поиск пути на графе

4 Случайные блуждания по графам - создание трейн сета для МЛ-модели

5 Подход к решению задач теории групп через машинное обучение. Оценка дистанции до цели через МЛ-модель и проблема наличия множественных локальных минимумов у этой оценки

6 Beam search. (Один из вариантов борьбы с застреваниями в локальных минимумах)

7 Бейзлайн реализация: МЛ+ Beam search - ноутбук: https://www.kaggle.com/code/alexandervc/baseline-1-for-permutations - решение кубика Рубика за пару минут

8 Cледующие шаги: RL-часть, улучшение нейросеток, улучшение трейн сета, улучшение beam search

Добавляйтесь в группу проекта: https://www.tgoop.com/sberlogasci/10989 и пишите @alexander_v_c - если Вам интересно !

PS

См. также предыдущий вводный доклад:
https://www.tgoop.com/sberlogasci/10989/15283 "Введение в методы поиска короткого пути на больших графах" (Кирилл Хоружий )

Zoom link will be in @sberlogabig just before start. Video records: https://www.youtube.com/c/SciBerloga - subscribe !

BY Artificial stupidity




Share with your friend now:
tgoop.com/artificial_stupid/406

View MORE
Open in Telegram


Telegram News

Date: |

Telegram is a leading cloud-based instant messages platform. It became popular in recent years for its privacy, speed, voice and video quality, and other unmatched features over its main competitor Whatsapp. 1What is Telegram Channels? Polls Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram.
from us


Telegram Artificial stupidity
FROM American