Notice: file_put_contents(): Write of 9343 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 17535 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Artificial stupidity@artificial_stupid P.390
ARTIFICIAL_STUPID Telegram 390
#ml #llm

(Zero-)(One-)Few-Shot Learning.

Продолжаем про техники работы с промптами. Сегодня поговорим об использовании примеров решения задачи в промпте.

Идея тут достаточно простая: если показать модели примеры правильного решения задачи, то ей сильно проще будет сделать похожее действие. Собственно, все эти цифры в названии и обозначают число примеров (то нуля до нескольких).

Например, мы хотим в промпте попросить модель оценить, позитивное или негативное высказывание мы подали на вход (то есть, решаем задачу sentiment analysis). В таком случае, мы можем дать несколько примеров того, какой текст мы посчитали "позитивным", а какой "негативным".

Но стоит учитывать, что:
1. Важно учитывать реальное распределение меток.
Например, в той же задаче sentiment analysis. Если мы приведем слишком много позитивных примеров, то модель может начать считать, что выгоднее отвечать более позитивно. Это, в свою очередь, исказит получаемые результаты;
2. Использование примеров влияет на результаты.
Удивительно, но даже не очень точные пользовательские примеры могут улучшать результирующие ответы LLM. Поэтому, добавление примеров – это скорее позитивное изменение промпта, улучшающее качество наших результатов;
3. Few-shot техники имеют свои ограничения.
В случае простых запросов, few-shot подход может быть сильной техникой. Но для более сложных задач, требующих рассуждений, наш подход с примерами может не срабатывать. Чем-то похоже на мем "дорисуй сову". Даже если есть несколько примеров дорисовывания совы из пары кругов - это не значит, что среднему человеку удастся хорошо научиться ее рисовать ;)
👍3



tgoop.com/artificial_stupid/390
Create:
Last Update:

#ml #llm

(Zero-)(One-)Few-Shot Learning.

Продолжаем про техники работы с промптами. Сегодня поговорим об использовании примеров решения задачи в промпте.

Идея тут достаточно простая: если показать модели примеры правильного решения задачи, то ей сильно проще будет сделать похожее действие. Собственно, все эти цифры в названии и обозначают число примеров (то нуля до нескольких).

Например, мы хотим в промпте попросить модель оценить, позитивное или негативное высказывание мы подали на вход (то есть, решаем задачу sentiment analysis). В таком случае, мы можем дать несколько примеров того, какой текст мы посчитали "позитивным", а какой "негативным".

Но стоит учитывать, что:
1. Важно учитывать реальное распределение меток.
Например, в той же задаче sentiment analysis. Если мы приведем слишком много позитивных примеров, то модель может начать считать, что выгоднее отвечать более позитивно. Это, в свою очередь, исказит получаемые результаты;
2. Использование примеров влияет на результаты.
Удивительно, но даже не очень точные пользовательские примеры могут улучшать результирующие ответы LLM. Поэтому, добавление примеров – это скорее позитивное изменение промпта, улучшающее качество наших результатов;
3. Few-shot техники имеют свои ограничения.
В случае простых запросов, few-shot подход может быть сильной техникой. Но для более сложных задач, требующих рассуждений, наш подход с примерами может не срабатывать. Чем-то похоже на мем "дорисуй сову". Даже если есть несколько примеров дорисовывания совы из пары кругов - это не значит, что среднему человеку удастся хорошо научиться ее рисовать ;)

BY Artificial stupidity


Share with your friend now:
tgoop.com/artificial_stupid/390

View MORE
Open in Telegram


Telegram News

Date: |

As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail. Concise According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. You can invite up to 200 people from your contacts to join your channel as the next step. Select the users you want to add and click “Invite.” You can skip this step altogether.
from us


Telegram Artificial stupidity
FROM American