ARTIFICIAL_STUPID Telegram 385
#ml #llm

Коль я уж занимаюсь последнее время LLM, давайте о них и поговорим. Итак, начнем с простых вещей. Много кто пытался вывести "формулу идеального промпта" (ей богу, звучит максимально алхимически, почти "формула философского камня"). В итоге есть множество вариантов, как именно лучше писать промпт. Давайте рассмотрим один из таких вариантов:

1. Задача.
Четкое и детальное описание задачи, которую требуется решить LLM. Самая важная часть, в которой мы описываем, а что же мы хотели от модели. Некорректная постановка задачи приведет к некорректному ответу. 
2. Контекст.
Дополнительный контекст, который может быть важен для задачи. Можно определить, с какой позиции нужно рассматривать вопрос, вносить дополнительные справочные данные или иную важную для получения результата информацию.
Частью контекста может быть т.н. “Персона”, то есть детальное описание, с какой точки зрения смотреть на задачу. 
3. Примеры/Пояснения.
Мы можем привести дополнительные разъяснения о том, как именно мы хотели бы решить задачу. Например, указать, нужно ли нам детальное решение или краткое, должен ли быть тон профессиональным или дружелюбным и т.д.
Отдельно мы можем привести пример (или несколько примеров) того, как должна быть решена задача. Конечно, если такой пример в принципе можно привести.
4. Формат.
В этой части мы можем указать, в какой формате нам нужен ответ. Это должна быть таблица, план решения задачи, работоспособный код на определенном языке? Все это позволяет точнее зафиксировать, как именно модель должна нам ответить.

Некоторые из пунктов дробят на меньшие сущности (например, выделяют "персону/роль" в отдельную сущность). В других материалах дополнительно приводят "важность" каждой составляющей (Задача важнее всего, потом идет контекст, а потом уже примеры/пояснения, описание роли, формат ответа и т.п.). Но в целом все крутится примерно около того же самого.

Получаем, что Промпт = Задача + Контекст + Примеры/Пояснения + Формат итога
👍82



tgoop.com/artificial_stupid/385
Create:
Last Update:

#ml #llm

Коль я уж занимаюсь последнее время LLM, давайте о них и поговорим. Итак, начнем с простых вещей. Много кто пытался вывести "формулу идеального промпта" (ей богу, звучит максимально алхимически, почти "формула философского камня"). В итоге есть множество вариантов, как именно лучше писать промпт. Давайте рассмотрим один из таких вариантов:

1. Задача.
Четкое и детальное описание задачи, которую требуется решить LLM. Самая важная часть, в которой мы описываем, а что же мы хотели от модели. Некорректная постановка задачи приведет к некорректному ответу. 
2. Контекст.
Дополнительный контекст, который может быть важен для задачи. Можно определить, с какой позиции нужно рассматривать вопрос, вносить дополнительные справочные данные или иную важную для получения результата информацию.
Частью контекста может быть т.н. “Персона”, то есть детальное описание, с какой точки зрения смотреть на задачу. 
3. Примеры/Пояснения.
Мы можем привести дополнительные разъяснения о том, как именно мы хотели бы решить задачу. Например, указать, нужно ли нам детальное решение или краткое, должен ли быть тон профессиональным или дружелюбным и т.д.
Отдельно мы можем привести пример (или несколько примеров) того, как должна быть решена задача. Конечно, если такой пример в принципе можно привести.
4. Формат.
В этой части мы можем указать, в какой формате нам нужен ответ. Это должна быть таблица, план решения задачи, работоспособный код на определенном языке? Все это позволяет точнее зафиксировать, как именно модель должна нам ответить.

Некоторые из пунктов дробят на меньшие сущности (например, выделяют "персону/роль" в отдельную сущность). В других материалах дополнительно приводят "важность" каждой составляющей (Задача важнее всего, потом идет контекст, а потом уже примеры/пояснения, описание роли, формат ответа и т.п.). Но в целом все крутится примерно около того же самого.

Получаем, что Промпт = Задача + Контекст + Примеры/Пояснения + Формат итога

BY Artificial stupidity


Share with your friend now:
tgoop.com/artificial_stupid/385

View MORE
Open in Telegram


Telegram News

Date: |

As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” ‘Ban’ on Telegram Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. The Standard Channel The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously.
from us


Telegram Artificial stupidity
FROM American