tgoop.com/artificial_stupid/251
Last Update:
#ltv #AB #statistics
Проведение A/B тестов над LTV.
Учитывая, что LTV - метрика с достаточно долгим сроком прогнозирования (от месяцев до лет), очевидным образом у нас может возникнуть вопрос - а как это тестировать то? Кажется, что при скорости A/B тестов 1 раз в полгода-год, конкуренты легкой лунной походкой обойдут нас на всех поворотах и вырвутся в лидеры. Потому надо что-то делать.
В принципе, проблему A/B тестирования LTV можно свести к более общей проблеме оценки Long-term эффектов. Этой проблеме даже посвятили отдельный раздел в paper’е Рона Кохави и Лукаса Веермеера “Top Challenges from the first Practical Online Controlled Experiments Summit”. Давайте посмотрим на предлагаемые индустрией решения этой проблемы.
Итак, что же нам предлагают исследователи из разных компаний:
- Отложенная выборка.
Нам предлагается “отложить” на достаточно долгое время некую часть пользователей, на которую мы не будем применять воздействий. В принципе, подход рабочий (мы на одном из предыдущих мест работы его применяли), но сложно реализуемый, если у вас есть хоть какой-то сетевой эффект. Например, часть пользователей будет видеть рекомендательную систему и расскажет своим друзьям. А у них такой системы нет. И тогда поддержке придется туго, если они захотят объяснить, отчего же такое произошло.
Вторая проблема - ротация пользователей. Если мы все не решимся “замораживать” пользователя на год, то у нас должна появиться логика ротации пользователей, то есть перемещения их в “заморозку”, последующего возвращения и правил попадания в эту группу, что может быть не так просто.
- Прокси-метрики.
Простой вариант - мы смотрим не на основную метрику, а на какой-то промежуточный показатель, который, как нам кажется, хорошо определяет поведение основного показателя. Например, для LTV это может быть retention, или user-engagement. То есть, вовлеченность пользователя может неплохо отражать его склонность тратить на нас деньги.
Но минус тут очевидный - “correlation may not imply causation”. Т.к. зависимость между метриками может и не быть реальной причинно-следственной связью. И тогда выводы на proxy не будут вести к улучшению главного показателя.
- Моделирование на основании частичных данных.
Такой подход используется в Google. Давайте запускать кусочки эксперимента через некоторые периоды времени. И потом сравнивать, как постепенно затухает наша метрика при удалении во времени от эксперимента. А дальше мы можем выучить какую-либо кривую, которая аппроксимирует наше затухание, и учитывать это при предсказании эффектов от экспериментов.
Тут тоже не без проблем. Процесс такого запуска весьма непростой и сделать очень большие временные лаги между запусками вряд ли выйдет. Плюс, у нас добавляется еще и моделирующая составляющая, то есть тут нужно все делать аккуратно. Ну и не забывать о смещении, ибо есть вероятность обучить что-то и нарваться на смещенные предсказания.
- Суррогаты.
Можно сказать, что это своего рода расширение над прокси-метриками. В данном случае, мы ищем статистические суррогаты, которые находятся в графе причинно-следственных связей между treatment и outcome. И, что главное, имеют следующее свойство: treatment и outcome условно независимы при условии суррогата. При этом, нам не обязательно использовать только одну прокси-метрику для построения суррогата - мы можем построить вектор прокси-метрик, который будет иметь требуемое свойство.
Соответственно, из минусов у нас то, что нам надо строить какую-то причинно следственную модель, отбирать прокси-метрики в суррогат, пытаясь учесть все нужные прокси (что не так просто, как может показаться на первый взгляд).
Чтобы чуть углубитьcя в тему, давайте рассмотрим какой-нибудь из вариантов решения проблемы оценки Long-term эффектов. В следующей заметке я опишу использование статистических суррогатов на основе статьи от LinkedIn.
BY Artificial stupidity
Share with your friend now:
tgoop.com/artificial_stupid/251