AI_TABLET Telegram 34
Набросал книжки/курсы, которые помогут стать хорошим DS

База
1. Классическое машинное обучение (табличные данные)
• Изучить можно по книге "Python Machine Learning by Sebastian Raschka". Читать можно все, кроме 13-й главы, которая устарела
• Специализация "Машинное обучение и анализ данных" от МФТИ и Яндекса
• Внутри 6 курсов (база по ml первые три курса, очень хороший курс по статистике 4й, 5-6 практика можно пропускать)
• Открытые решения / соревнования на Kaggle. Учат метрикам и валидации, и конечно строить звездолеты
• Лекции с датафеста https://www.youtube.com/channel/UCeq6ZIlvC9SVsfhfKnSvM9w и особенно ml training https://www.youtube.com/playlist?list=PLTlO6nV_TaGD21r6xPHhV1k7QfVuug3BB (тк это база старые доклады могут быть даже полезнее)

Практика/документация
• Углубиться в бустинги (надо хорошо понимать как и когда их применять, тк это основа в табличных задачах)
• Документация: https://catboost.ai/ https://xgboost.readthedocs.io/en https://lightgbm.readthedocs.io/en
2. Introducing MLOps (издательство O'Reilly)
• 200 страниц о том, как управлять моделями машинного обучения, чтобы они хорошо работали ("DevOps" для моделей).
3. Хайповый System design книжка Designing Machine Learning Systems (O'Reilly)
• О правильном построении моделей с точки зрения выбора метрик, поддерживаемости и масштабируемости
4. Развитие аналитических навыков – последнее в базе, но первое по важности
• Книга «Девенпорт, аналитика как конкурентное преимущество»
• Разобраться с SQL и Pandas – для работы с данными

5. Курс по рекомендательным системам Recsys: https://m.youtube.com/watch?v=igwNb7dBlms и https://www.youtube.com/playlist?list=PLX6toIl17nZENhNNUTrwR3Pxb8nCSKZsV (основное - 5 лекций, остальное - прикладные кейсы)

6. АБ-тестирование:
https://vkteam.medium.com/practitioners-guide-to-statistical-tests-ed2d580ef04f (гайд от VK)
https://practicum.yandex.ru/statistics-basic/ (бесплатный курс от Яндекса, вначале максимально примитивно)
• Книга Trustworthy Online Controlled Experiments

7. NLP – путь тут длинный. Нужно разобраться в tf-idf -> Word2vec и fasttext -> lstm -> трансформеры -> berts -> gpt -> LLM (+lora). Помогут один из следующих курсов
• Курс от ШАДа по NLP https://github.com/yandexdataschool/nlp_course
• Хорошо зарекомендовавший https://lena-voita.github.io/nlp_course.html
• База до трансформеров включительно от Abby, хоть и немного устаревший https://github.com/DanAnastasyev/DeepNLP-Course
• Здесь и далее очень круто погружают различные публикации с обзорными статьями. Наприме A Comprehensive Overview of Large Language Models https://arxiv.org/pdf/2307.06435

8. CV. Deep Learning with PyTorch база по DL. Практическая книга по компьютерному зрению (как построить первые модели для классификации, сегментации). А дальше уже самостоятельно изучать темы. Важные блоки:
• image classification
• segmentation
• GAN
• object detection
• instant segmentation
• pose estimation
• diffusion models
• multimodal models
• Vision Transformer
• +обзорные статьи


PS Если есть что добавить пишите в комментарии)
👍7🔥7🕊2



tgoop.com/ai_tablet/34
Create:
Last Update:

Набросал книжки/курсы, которые помогут стать хорошим DS

База
1. Классическое машинное обучение (табличные данные)
• Изучить можно по книге "Python Machine Learning by Sebastian Raschka". Читать можно все, кроме 13-й главы, которая устарела
• Специализация "Машинное обучение и анализ данных" от МФТИ и Яндекса
• Внутри 6 курсов (база по ml первые три курса, очень хороший курс по статистике 4й, 5-6 практика можно пропускать)
• Открытые решения / соревнования на Kaggle. Учат метрикам и валидации, и конечно строить звездолеты
• Лекции с датафеста https://www.youtube.com/channel/UCeq6ZIlvC9SVsfhfKnSvM9w и особенно ml training https://www.youtube.com/playlist?list=PLTlO6nV_TaGD21r6xPHhV1k7QfVuug3BB (тк это база старые доклады могут быть даже полезнее)

Практика/документация
• Углубиться в бустинги (надо хорошо понимать как и когда их применять, тк это основа в табличных задачах)
• Документация: https://catboost.ai/ https://xgboost.readthedocs.io/en https://lightgbm.readthedocs.io/en
2. Introducing MLOps (издательство O'Reilly)
• 200 страниц о том, как управлять моделями машинного обучения, чтобы они хорошо работали ("DevOps" для моделей).
3. Хайповый System design книжка Designing Machine Learning Systems (O'Reilly)
• О правильном построении моделей с точки зрения выбора метрик, поддерживаемости и масштабируемости
4. Развитие аналитических навыков – последнее в базе, но первое по важности
• Книга «Девенпорт, аналитика как конкурентное преимущество»
• Разобраться с SQL и Pandas – для работы с данными

5. Курс по рекомендательным системам Recsys: https://m.youtube.com/watch?v=igwNb7dBlms и https://www.youtube.com/playlist?list=PLX6toIl17nZENhNNUTrwR3Pxb8nCSKZsV (основное - 5 лекций, остальное - прикладные кейсы)

6. АБ-тестирование:
https://vkteam.medium.com/practitioners-guide-to-statistical-tests-ed2d580ef04f (гайд от VK)
https://practicum.yandex.ru/statistics-basic/ (бесплатный курс от Яндекса, вначале максимально примитивно)
• Книга Trustworthy Online Controlled Experiments

7. NLP – путь тут длинный. Нужно разобраться в tf-idf -> Word2vec и fasttext -> lstm -> трансформеры -> berts -> gpt -> LLM (+lora). Помогут один из следующих курсов
• Курс от ШАДа по NLP https://github.com/yandexdataschool/nlp_course
• Хорошо зарекомендовавший https://lena-voita.github.io/nlp_course.html
• База до трансформеров включительно от Abby, хоть и немного устаревший https://github.com/DanAnastasyev/DeepNLP-Course
• Здесь и далее очень круто погружают различные публикации с обзорными статьями. Наприме A Comprehensive Overview of Large Language Models https://arxiv.org/pdf/2307.06435

8. CV. Deep Learning with PyTorch база по DL. Практическая книга по компьютерному зрению (как построить первые модели для классификации, сегментации). А дальше уже самостоятельно изучать темы. Важные блоки:
• image classification
• segmentation
• GAN
• object detection
• instant segmentation
• pose estimation
• diffusion models
• multimodal models
• Vision Transformer
• +обзорные статьи


PS Если есть что добавить пишите в комментарии)

BY AI.Insaf


Share with your friend now:
tgoop.com/ai_tablet/34

View MORE
Open in Telegram


Telegram News

Date: |

1What is Telegram Channels? Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. With the “Bear Market Screaming Therapy Group,” we’ve now transcended language.
from us


Telegram AI.Insaf
FROM American