tgoop.com/ai_python/17749
Last Update:
این منبع به بررسی عمیق دو موضوع کلیدی در توسعه هوش مصنوعی میپردازد:
تقویت حافظه بلندمدت برای Agent های هوش مصنوعی با استفاده از یکپارچهسازی LangGraph و MongoDB، و پیاده سازی هوش مصنوعی اخلاق محور در سیستمهای هوش مصنوعی از طریق هوش مصنوعی ساختاری (Constitutional AI) و قابلیتهای دادهای MongoDB.
@ai_python
بخش اول بر اهمیت توانایی Agent های هوش مصنوعی برای به خاطر سپردن اطلاعات در چندین جلسه تاکید دارد و راهکار MongoDB Store for LangGraph را معرفی میکند که امکان ذخیرهسازی مداوم اطلاعات را فراهم میآورد. بخش دوم، هوش مصنوعی ساختاری را به عنوان یک روش خودگردانی اخلاقی برای مدلهای هوش مصنوعی توضیح میدهد و نشان میدهد که چگونه MongoDB با قابلیتهایی مانند کنترل دسترسی مبتنی بر Role و جستجوی برداری پیشرفته، زیرساخت لازم برای پیادهسازی این چارچوبهای اخلاقی را فراهم میکند. در نهایت، بلاگ، به پتانسیل هوش مصنوعی در بهبود عملیات تحریریه و ایجاد جریانهای کاری کارآمدتر برای تولید محتوا نیز اشاره دارد.
https://www.mongodb.com/company/blog/product-release-announcements/powering-long-term-memory-for-agents-langgraph
فایل پادکست مرتبط : https://www.tgoop.com/navidcasts/20
BY DLeX: AI Python

Share with your friend now:
tgoop.com/ai_python/17749