ABC_FOR_IT Telegram 1595
🐳 Чек-лист: использование Docker в задачах Data Science

Цель: обеспечить воспроизводимость, удобную работу с зависимостями и подготовку модели к деплою с помощью контейнеризации.

1️⃣ Установка и проверка Docker

🟣Установите Docker Desktop или Docker Engine для Linux

🟣Проверьте установку командой:
  docker --version


🟣 Выполните тестовый запуск:
  docker run hello-world


Это подтвердит, что Docker работает корректно.

2️⃣ Создание Dockerfile для проекта

🟣 Выберите подходящий базовый образ:
python:3.11-slim — компактный образ на Python
jupyter/datascience-notebook — включает Jupyter и популярные библиотеки

🟣Создайте файл Dockerfile и опишите в нём:
  FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt


🟣Убедитесь, что файл requirements.txt содержит все зависимости проекта

3️⃣ Подготовка окружения для воспроизводимости

🟣 Укажите фиксированные версии библиотек в requirements.txt, например:
  pandas==2.2.1
numpy==1.26.0


🟣 Добавьте .dockerignore, чтобы исключить ненужные файлы:
  .git
*.csv
__pycache__/


🟣 Постройте образ:
  docker build -t my-ds-image .


4️⃣ Работа с данными в контейнере

🟣 Подключите локальные данные:
  docker run -v /path/to/data:/app/data my-ds-image


🟣 Запустите Jupyter Notebook внутри контейнера:
  docker run -p 8888:8888 my-ds-image jupyter notebook --ip=0.0.0.0 --allow-root


🟣 При необходимости работы с GPU:
— Убедитесь, что установлен nvidia-docker
— Используйте флаг --gpus all

5️⃣ Тестирование и отладка

🟣 Получите интерактивный доступ к контейнеру:
  docker run -it my-ds-image bash


🟣Проверьте, работают ли библиотеки:
  python -c "import pandas; print(pandas.__version__)"


🟣 Просмотрите логи выполнения контейнера:
  docker logs <container_id>


6️⃣ Деплой модели как API

🟣 Напишите API на Flask или FastAPI (файл app.py)

🟣 Укажите в Dockerfile команду запуска:
  CMD ["python", "app.py"]


🟣 Запустите модель как сервис:
  docker run -p 5000:5000 my-ds-image  


🚩 Полезные инструменты и образы

🟣 Docker Compose — для запуска нескольких контейнеров (например, модель + база данных)

🟣 Образы:
tensorflow/tensorflow:latest-gpu — с поддержкой GPU
continuumio/anaconda3 — включает Anaconda и библиотеки

🔎 Рекомендация

Храните Dockerfile и requirements.txt в репозитории. Это залог воспроизводимости и эффективной командной работы в проектах Data Science.

🏃‍♀️ Азбука айтишника

#ликбез
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏1



tgoop.com/abc_for_it/1595
Create:
Last Update:

🐳 Чек-лист: использование Docker в задачах Data Science

Цель: обеспечить воспроизводимость, удобную работу с зависимостями и подготовку модели к деплою с помощью контейнеризации.

1️⃣ Установка и проверка Docker

🟣Установите Docker Desktop или Docker Engine для Linux

🟣Проверьте установку командой:

  docker --version


🟣 Выполните тестовый запуск:
  docker run hello-world


Это подтвердит, что Docker работает корректно.

2️⃣ Создание Dockerfile для проекта

🟣 Выберите подходящий базовый образ:
python:3.11-slim — компактный образ на Python
jupyter/datascience-notebook — включает Jupyter и популярные библиотеки

🟣Создайте файл Dockerfile и опишите в нём:
  FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt


🟣Убедитесь, что файл requirements.txt содержит все зависимости проекта

3️⃣ Подготовка окружения для воспроизводимости

🟣 Укажите фиксированные версии библиотек в requirements.txt, например:
  pandas==2.2.1
numpy==1.26.0


🟣 Добавьте .dockerignore, чтобы исключить ненужные файлы:
  .git
*.csv
__pycache__/


🟣 Постройте образ:
  docker build -t my-ds-image .


4️⃣ Работа с данными в контейнере

🟣 Подключите локальные данные:
  docker run -v /path/to/data:/app/data my-ds-image


🟣 Запустите Jupyter Notebook внутри контейнера:
  docker run -p 8888:8888 my-ds-image jupyter notebook --ip=0.0.0.0 --allow-root


🟣 При необходимости работы с GPU:
— Убедитесь, что установлен nvidia-docker
— Используйте флаг --gpus all

5️⃣ Тестирование и отладка

🟣 Получите интерактивный доступ к контейнеру:
  docker run -it my-ds-image bash


🟣Проверьте, работают ли библиотеки:
  python -c "import pandas; print(pandas.__version__)"


🟣 Просмотрите логи выполнения контейнера:
  docker logs <container_id>


6️⃣ Деплой модели как API

🟣 Напишите API на Flask или FastAPI (файл app.py)

🟣 Укажите в Dockerfile команду запуска:
  CMD ["python", "app.py"]


🟣 Запустите модель как сервис:
  docker run -p 5000:5000 my-ds-image  


🚩 Полезные инструменты и образы

🟣 Docker Compose — для запуска нескольких контейнеров (например, модель + база данных)

🟣 Образы:
tensorflow/tensorflow:latest-gpu — с поддержкой GPU
continuumio/anaconda3 — включает Anaconda и библиотеки

🔎 Рекомендация

Храните Dockerfile и requirements.txt в репозитории. Это залог воспроизводимости и эффективной командной работы в проектах Data Science.

🏃‍♀️ Азбука айтишника

#ликбез

BY Азбука айтишника




Share with your friend now:
tgoop.com/abc_for_it/1595

View MORE
Open in Telegram


Telegram News

Date: |

Clear Channel login must contain 5-32 characters The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. How to build a private or public channel on Telegram? How to Create a Private or Public Channel on Telegram?
from us


Telegram Азбука айтишника
FROM American