RUSSIAN_OSINT Telegram 5514
🤖 Исследователи представили универсальный метод атаки на LLM под названием «Policy Puppetry»

Как сообщают исследователи из HiddenLayer, им удалось разработать универсальную методику prompt injection, которая позволяет обходить защитные барьеры LLM. Техника под названием «Policy Puppetry» успешно нарушает политики безопасности современных LLM и выходит за рамки ограничений таких моделей, как OpenAI (линейки ChatGPT 4o, 4.5, o1 и o3-mini), Google (Gemini 1.5, 2.0, 2.5), Microsoft (Copilot), Anthropic (Claude 3.5, 3.7), Llama, DeepSeek (V3 и R1), Qwen (2.5 72B) и Mistral (Mixtral 8x22B).

Исследователи не публикуют полные вредоносные примеры и не предоставляют доступ к готовым PoC для свободного использования, а лишь объясняют метод в научных целях.

Многие LLM от OpenAI, Google и Microsoft хорошо обучены отклонять прямолинейные опасные запросы, но если "вшить" их в инструкции и сделать частью собственных правил, то модели будут генерировать запрещённый контент без активации защитных механизмов.

Основой метода является использование специальных текстовых шаблонов, имитирующих документы политик в форматах XML, JSON или INI. При помощи таких шаблонов модели воспринимают вредоносные команды как безопасные системные инструкции. Они позволяют обходить встроенные ограничения и генерировать запрещенный контент, связанный с разработкой ⚠️ оружия массового поражения, пропагандой насилия, инструкциями по нанесению вреда себе, химическим оружием, а также с раскрытием конфиденциальной информации о работе внутренних механизмов моделей.

Условно: ИИ-модель думает: «Это не просьба пользователя, а команда на изменение настроек!». Когда текст выглядит как код или служебная инструкция, то модель перестаёт применять фильтры безопасности и начинает воспринимать команды буквально.

Техника отличается исключительной универсальностью. Один и тот же шаблон может применяться против множества моделей без необходимости в доработках. ↔️ Опасность обнаруженного метода в том, что он доступен практически любому пользователю и не требует глубоких технических знаний.

По мнению исследователей, подобная уязвимость свидетельствует о фундаментальных недостатках в методах обучения и настройки LLM, отмечая острую необходимость в новых подходах к обеспечению безопасности, чтобы предотвратить дальнейшее распространение угроз по мере усложнения ИИ-моделей.

@Russian_OSINT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/Russian_OSINT/5514
Create:
Last Update:

🤖 Исследователи представили универсальный метод атаки на LLM под названием «Policy Puppetry»

Как сообщают исследователи из HiddenLayer, им удалось разработать универсальную методику prompt injection, которая позволяет обходить защитные барьеры LLM. Техника под названием «Policy Puppetry» успешно нарушает политики безопасности современных LLM и выходит за рамки ограничений таких моделей, как OpenAI (линейки ChatGPT 4o, 4.5, o1 и o3-mini), Google (Gemini 1.5, 2.0, 2.5), Microsoft (Copilot), Anthropic (Claude 3.5, 3.7), Llama, DeepSeek (V3 и R1), Qwen (2.5 72B) и Mistral (Mixtral 8x22B).

Исследователи не публикуют полные вредоносные примеры и не предоставляют доступ к готовым PoC для свободного использования, а лишь объясняют метод в научных целях.

Многие LLM от OpenAI, Google и Microsoft хорошо обучены отклонять прямолинейные опасные запросы, но если "вшить" их в инструкции и сделать частью собственных правил, то модели будут генерировать запрещённый контент без активации защитных механизмов.

Основой метода является использование специальных текстовых шаблонов, имитирующих документы политик в форматах XML, JSON или INI. При помощи таких шаблонов модели воспринимают вредоносные команды как безопасные системные инструкции. Они позволяют обходить встроенные ограничения и генерировать запрещенный контент, связанный с разработкой ⚠️ оружия массового поражения, пропагандой насилия, инструкциями по нанесению вреда себе, химическим оружием, а также с раскрытием конфиденциальной информации о работе внутренних механизмов моделей.

Условно: ИИ-модель думает: «Это не просьба пользователя, а команда на изменение настроек!». Когда текст выглядит как код или служебная инструкция, то модель перестаёт применять фильтры безопасности и начинает воспринимать команды буквально.

Техника отличается исключительной универсальностью. Один и тот же шаблон может применяться против множества моделей без необходимости в доработках. ↔️ Опасность обнаруженного метода в том, что он доступен практически любому пользователю и не требует глубоких технических знаний.

По мнению исследователей, подобная уязвимость свидетельствует о фундаментальных недостатках в методах обучения и настройки LLM, отмечая острую необходимость в новых подходах к обеспечению безопасности, чтобы предотвратить дальнейшее распространение угроз по мере усложнения ИИ-моделей.

@Russian_OSINT

BY Russian OSINT






Share with your friend now:
tgoop.com/Russian_OSINT/5514

View MORE
Open in Telegram


Telegram News

Date: |

In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option. "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up.
from us


Telegram Russian OSINT
FROM American