MACHINE_LEARN Telegram 3345
JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.

Paper: https://arxiv.org/pdf/2411.07975v1.pdf

Code: https://github.com/deepseek-ai/janus

Datasets: GQA MMBench MM-Vet SEED-Bench

@Machine_learn
👍3



tgoop.com/Machine_learn/3345
Create:
Last Update:

JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.

Paper: https://arxiv.org/pdf/2411.07975v1.pdf

Code: https://github.com/deepseek-ai/janus

Datasets: GQA MMBench MM-Vet SEED-Bench

@Machine_learn

BY Machine learning books and papers




Share with your friend now:
tgoop.com/Machine_learn/3345

View MORE
Open in Telegram


Telegram News

Date: |

1What is Telegram Channels? Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation.
from us


Telegram Machine learning books and papers
FROM American