✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. 6How to manage your Telegram channel?
from us