Notice: file_put_contents(): Write of 12441 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 20633 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
ریاضی، آمار و علوم کامپیوتر - مدارس میان‌رشته‌ای@IDS_Math P.232
IDS_MATH Telegram 232
💡#کشف_جادوی_اعداد_و_احتمالات

🔸 اعداد جادویی حسابی

عدد 142857 دارای ویژگی‌های شگفت‌انگیزی است که گاهی به آن‌ها خاصیت جادویی می‌گویند. این ویژگی‌ها به جابجایی و ترتیب مجدد ارقام در مضرب‌های آن مربوط می‌شود؛ به عنوان مثال:

• 2(142857) = 285714

• 3(142857) = 428571

• 4(142857) = 571428

• 5(142857) = 714285

• 6(142857) = 857142

• 7(142857) = 999999

👀 سوال این است که آیا فقط عدد 142857 دارای این ویژگی‌ها است یا اینکه اعداد دیگری نیز وجود دارند. ابتدا به مضرب دو توجه می‌کنیم. بگذارید α، β و γ اعداد دو رقمی باشند. سپس عدد اعشاری αβγ به صورت زیر تعریف می‌شود: α(10,000) + β(100) + γ.

برای اینکه 2(αβγ) برابر با βγα شود، نیاز است که:

• 2α = β

• 2β + 1 = γ

• 2γ - 100 = α

🟢این یک مجموعه از سه معادله خطی در سه ناشناخته است. ثابت‌ها همه صفر نیستند، بنابراین یک راه‌حل منحصر به فرد وجود دارد. جالب اینجاست که این راه‌حل شناخته شده است؛ یعنی α=14، β=28 و γ=57.

اما مشخص است که 2(285714)=571428. این معادله مربوط به راه‌حل زیر است:

• 2α + 1 = β

• 2β - 100 = γ

• 2γ = α

🟢این تنها ترتیب مجدد از جمله‌های ثابت است. بنابراین، جابجایی جادویی ارقام هنگام ضرب در 2 تنها برای اعداد 142857 و 285714 ممکن است. عدد 142857 به عنوان یک بلوک تکراری در نمایش اعشاری 1/7 به وجود می‌آید.

حال به مضرب‌های 076923 توجه کنید:

• (2)076923 = 153846

• (3)076923 = 230769

• (4)076923 = 307692

• (5)076923 = 384615

• (6)076923 = 461538

• (7)076923 = 538461

• (8)076923 = 615384

• (9)076923 = 692307

• (10)076923 = 769230

• (11)076923 = 846153

• (12)076923 = 923076

‼️جابجایی و ترتیب مجدد ارقام برای مضرب دو اتفاق نمی‌افتد، اما برای مضرب‌های سه و نه این اتفاق می‌افتد. از تحلیل قبلی مشخص است که 076923 و 230769 تنها اعداد شش‌رقمی هستند که برای ضرب در سه جابجایی و ترتیب مجدد رخ می‌دهد. عدد 076923 به عنوان یک بلوک تکراری در نمایش اعشاری 1/13 به وجود می‌آید.

💡بیان‌های فوق به اعداد شش‌رقمی اشاره دارد. برای اعداد چهار رقمی ممکن است اعداد جادویی دیگری وجود داشته باشد.

🔣نتیجه‌گیری: اعداد دارای خاصیتی که با ضرب در یک عدد صحیح، جابجایی و ترتیب مجدد ارقام خود را به دست می‌آورند، نسبتاً نادر هستند.

#️⃣#IDSchools
#️⃣#IDS
#️⃣#IDS_Math

✉️@IDSchools
✉️@IDS_Math
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/IDS_Math/232
Create:
Last Update:

💡#کشف_جادوی_اعداد_و_احتمالات

🔸 اعداد جادویی حسابی

عدد 142857 دارای ویژگی‌های شگفت‌انگیزی است که گاهی به آن‌ها خاصیت جادویی می‌گویند. این ویژگی‌ها به جابجایی و ترتیب مجدد ارقام در مضرب‌های آن مربوط می‌شود؛ به عنوان مثال:

• 2(142857) = 285714

• 3(142857) = 428571

• 4(142857) = 571428

• 5(142857) = 714285

• 6(142857) = 857142

• 7(142857) = 999999

👀 سوال این است که آیا فقط عدد 142857 دارای این ویژگی‌ها است یا اینکه اعداد دیگری نیز وجود دارند. ابتدا به مضرب دو توجه می‌کنیم. بگذارید α، β و γ اعداد دو رقمی باشند. سپس عدد اعشاری αβγ به صورت زیر تعریف می‌شود: α(10,000) + β(100) + γ.

برای اینکه 2(αβγ) برابر با βγα شود، نیاز است که:

• 2α = β

• 2β + 1 = γ

• 2γ - 100 = α

🟢این یک مجموعه از سه معادله خطی در سه ناشناخته است. ثابت‌ها همه صفر نیستند، بنابراین یک راه‌حل منحصر به فرد وجود دارد. جالب اینجاست که این راه‌حل شناخته شده است؛ یعنی α=14، β=28 و γ=57.

اما مشخص است که 2(285714)=571428. این معادله مربوط به راه‌حل زیر است:

• 2α + 1 = β

• 2β - 100 = γ

• 2γ = α

🟢این تنها ترتیب مجدد از جمله‌های ثابت است. بنابراین، جابجایی جادویی ارقام هنگام ضرب در 2 تنها برای اعداد 142857 و 285714 ممکن است. عدد 142857 به عنوان یک بلوک تکراری در نمایش اعشاری 1/7 به وجود می‌آید.

حال به مضرب‌های 076923 توجه کنید:

• (2)076923 = 153846

• (3)076923 = 230769

• (4)076923 = 307692

• (5)076923 = 384615

• (6)076923 = 461538

• (7)076923 = 538461

• (8)076923 = 615384

• (9)076923 = 692307

• (10)076923 = 769230

• (11)076923 = 846153

• (12)076923 = 923076

‼️جابجایی و ترتیب مجدد ارقام برای مضرب دو اتفاق نمی‌افتد، اما برای مضرب‌های سه و نه این اتفاق می‌افتد. از تحلیل قبلی مشخص است که 076923 و 230769 تنها اعداد شش‌رقمی هستند که برای ضرب در سه جابجایی و ترتیب مجدد رخ می‌دهد. عدد 076923 به عنوان یک بلوک تکراری در نمایش اعشاری 1/13 به وجود می‌آید.

💡بیان‌های فوق به اعداد شش‌رقمی اشاره دارد. برای اعداد چهار رقمی ممکن است اعداد جادویی دیگری وجود داشته باشد.

🔣نتیجه‌گیری: اعداد دارای خاصیتی که با ضرب در یک عدد صحیح، جابجایی و ترتیب مجدد ارقام خود را به دست می‌آورند، نسبتاً نادر هستند.

#️⃣#IDSchools
#️⃣#IDS
#️⃣#IDS_Math

✉️@IDSchools
✉️@IDS_Math

BY ریاضی، آمار و علوم کامپیوتر - مدارس میان‌رشته‌ای


Share with your friend now:
tgoop.com/IDS_Math/232

View MORE
Open in Telegram


Telegram News

Date: |

Write your hashtags in the language of your target audience. fire bomb molotov November 18 Dylan Hollingsworth yau ma tei 5Telegram Channel avatar size/dimensions How to create a business channel on Telegram? (Tutorial) Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators.
from us


Telegram ریاضی، آمار و علوم کامپیوتر - مدارس میان‌رشته‌ای
FROM American