FINPY Telegram 987
#فیچر_سلکشن

ارزیابی کارآمدی روش های فیچر سلکشن - مقدمات

▫️فیچر سلکشن یکی از مهمترین مراحل توسعه یه مدل ML هست که در اون سعی میشه از ابعاد فضای ورودی مدل (تعداد فیچرها) کاسته بشه. این کاهش ابعاد میتونه تفسیرپذیری مدل و ساختن تئوری رو ساده تر و همچنین ترین کردن (و حتی فاز جمع آوری داده) رو سریعتر کنه. ساختن تئوری بر اساس تفسیر مدل تو فایننس اهمیت ویژه ای داره تا مدل هایی که توسعه دادیم بعدا و در عمل دستمون رو تو پوست گردو نزارن، ضمن اینکه ساخت تئوری با تفسیر مدل های ML میتونه حتی در پیش بینی قوهای سیاه هم راهگشا باشه (اینجا). اما مهمتر از همه این موارد، فیچر سلکشن میتونه با کاهش امکان اورفیت از طریق شناسایی و حذف فیچرهای نویز که قابلیت پیش بینی ندارند و به تبع اون افزایش جنرالیزیشن، کارآمدی بهتر روی داده هایی که مدل ندیده رو برامون به ارمغان بیاره.

▫️حالا که اهمیت فیچر سلکشن رو مرور کردیم و متوجه شدیم که مهمترین کاری که فیچر سلکشن برامون انجام میده، حذف فیچرهای نویز هست، سوالی که پیش میاد اینه که روش هایی که برای فیچر سلکشن معرفی شدن، چقدر در انجام این مهم موفق اند. به عبارت دیگه چطور کارآمدی روش های فیچر سلکشن رو ارزیابی و یک یا دو تاش رو تو جعبه ابزارمون برای استفاده در مدل هایی که توسعه میدیم، بزاریم؟ ما که برای یک مساله موجود نمیدونیم کدوم فیچرها نویزاند، چطور بفهمیم چیزی که یک الگوریتم فیچر سلکشن به عنوان نویز به ما معرفی کرده درسته؟

▫️راهکار ترتیب دادن یه آزمایش و استفاده از یک یا چند دیتاست ساختگی توسط خودمون هست که میدونیم کدوم فیچرهای اون دیتاست نویزاند. بعد میتونیم مدلی رو روی این دیتاست ترین کنیم و سپس روی مدل ترین شده الگوریتمهای مختلف فیچر سلکشن رو ارزیابی کرده و ببینیم که آیا میتونن فیچرهای نویز رو به درستی برامون بیرون بکشن یا نه.

▫️به عنوان مثال میتونیم یه دیتاست با ۲۵ تا فیچر بسازیم که ۵ تاش نویز، ۵ تاش فیچرهای به اصطلاح informative و بقیه فیچرهای redundant باشند. سپس با استفاده از فیچرهای informative متغیر هدف (مثلا لیبل های صفر و یک) رو تولید کنیم. توضیح اینکه فیچرهای redundant هم از روی فیچرهای informative و با اضافه کردن نویزی با واریانس دلخواه تولید میشن.

▫️جزئیات چنین رویه ای، که برای ارزیابی کارآمدی الگوریتمهای مختلف در شناسایی فیچرهای نویز مورد استفاده قرار گرفته، در فصل ۶ این کتاب همراه با کد توضیح داده شده. در خصوص روش های فیچر سلکشن هم میتونید به همین کتاب مراجعه کنید اما هدف از این پست معرفی پکیج BorutaShap بود که در ادامه بهش خواهیم پرداخت.

@FinPy
👍11👎1



tgoop.com/FinPy/987
Create:
Last Update:

#فیچر_سلکشن

ارزیابی کارآمدی روش های فیچر سلکشن - مقدمات

▫️فیچر سلکشن یکی از مهمترین مراحل توسعه یه مدل ML هست که در اون سعی میشه از ابعاد فضای ورودی مدل (تعداد فیچرها) کاسته بشه. این کاهش ابعاد میتونه تفسیرپذیری مدل و ساختن تئوری رو ساده تر و همچنین ترین کردن (و حتی فاز جمع آوری داده) رو سریعتر کنه. ساختن تئوری بر اساس تفسیر مدل تو فایننس اهمیت ویژه ای داره تا مدل هایی که توسعه دادیم بعدا و در عمل دستمون رو تو پوست گردو نزارن، ضمن اینکه ساخت تئوری با تفسیر مدل های ML میتونه حتی در پیش بینی قوهای سیاه هم راهگشا باشه (اینجا). اما مهمتر از همه این موارد، فیچر سلکشن میتونه با کاهش امکان اورفیت از طریق شناسایی و حذف فیچرهای نویز که قابلیت پیش بینی ندارند و به تبع اون افزایش جنرالیزیشن، کارآمدی بهتر روی داده هایی که مدل ندیده رو برامون به ارمغان بیاره.

▫️حالا که اهمیت فیچر سلکشن رو مرور کردیم و متوجه شدیم که مهمترین کاری که فیچر سلکشن برامون انجام میده، حذف فیچرهای نویز هست، سوالی که پیش میاد اینه که روش هایی که برای فیچر سلکشن معرفی شدن، چقدر در انجام این مهم موفق اند. به عبارت دیگه چطور کارآمدی روش های فیچر سلکشن رو ارزیابی و یک یا دو تاش رو تو جعبه ابزارمون برای استفاده در مدل هایی که توسعه میدیم، بزاریم؟ ما که برای یک مساله موجود نمیدونیم کدوم فیچرها نویزاند، چطور بفهمیم چیزی که یک الگوریتم فیچر سلکشن به عنوان نویز به ما معرفی کرده درسته؟

▫️راهکار ترتیب دادن یه آزمایش و استفاده از یک یا چند دیتاست ساختگی توسط خودمون هست که میدونیم کدوم فیچرهای اون دیتاست نویزاند. بعد میتونیم مدلی رو روی این دیتاست ترین کنیم و سپس روی مدل ترین شده الگوریتمهای مختلف فیچر سلکشن رو ارزیابی کرده و ببینیم که آیا میتونن فیچرهای نویز رو به درستی برامون بیرون بکشن یا نه.

▫️به عنوان مثال میتونیم یه دیتاست با ۲۵ تا فیچر بسازیم که ۵ تاش نویز، ۵ تاش فیچرهای به اصطلاح informative و بقیه فیچرهای redundant باشند. سپس با استفاده از فیچرهای informative متغیر هدف (مثلا لیبل های صفر و یک) رو تولید کنیم. توضیح اینکه فیچرهای redundant هم از روی فیچرهای informative و با اضافه کردن نویزی با واریانس دلخواه تولید میشن.

▫️جزئیات چنین رویه ای، که برای ارزیابی کارآمدی الگوریتمهای مختلف در شناسایی فیچرهای نویز مورد استفاده قرار گرفته، در فصل ۶ این کتاب همراه با کد توضیح داده شده. در خصوص روش های فیچر سلکشن هم میتونید به همین کتاب مراجعه کنید اما هدف از این پست معرفی پکیج BorutaShap بود که در ادامه بهش خواهیم پرداخت.

@FinPy

BY فینپای | FinPy


Share with your friend now:
tgoop.com/FinPy/987

View MORE
Open in Telegram


Telegram News

Date: |

bank east asia october 20 kowloon Read now As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: How to Create a Private or Public Channel on Telegram?
from us


Telegram فینپای | FinPy
FROM American