tgoop.com/FinPy/1003
Last Update:
پیش بینی جهت بازار
▫️تشخیص صحیح جهت حرکت قیمت که از منظر ML یه مساله باینری کلاسیفیکیشنه، مهمترین رکن موفقیت در بازارهای مالی هست. فرض کنید یه دیتاست با فیچرهایی که میتونه در پیش بینی جهت، کارآمد باشه رو داریم و میخواییم بدونیم حرکت a% درصد بعدی قیمت، صعودی خواهد بود یا نزولی. اگر مدل رو روی همه مشاهدات دیتاست (همه نقاط زمانی) ترین کنیم، به دقت خوبی نخواهیم رسید، چون همه مشاهدات موجود در دیتاست ارزش یکسانی ندارند. وقتی مخلوطی از مشاهدات ارزشمند و بی ارزش رو به مدل میدیم، مدل نمیتونه فرآیند یادگیری رو به خوبی انجام بده چون سعی داره از مشاهدات بی ارزش هم یاد بگیره و همین موضوع، دقت اش رو کم میکنه.
▫️نمونه برداری با هدف کاهش مشاهدات (down-sampling) یکی از راهکارهای ممکن برای حل این مشکله. مثلا مشاهداتی که مرتبط با وقوع یه رخداد خاص در بازار هستند رو نگه میداریم و بقیه رو دور میریزیم. رخداد میتونه هر چیزی مثل عبور والیتیلیتی یا آنتروپی از یه ترشلد باشه. توی شکل یه سری رخداد با نقاط قرمز مشخص شدن که آموزش مدل و پیش بینی فقط در اون نقاط (فیچرها و لیبل مرتبط) انجام میشه و نه در همه نقاط سری زمانی قیمت.
@FinPy
BY فینپای | FinPy

Share with your friend now:
tgoop.com/FinPy/1003