DATASCIENCEGX Telegram 178
This media is not supported in your browser
VIEW IN TELEGRAM
5 техник дообучения LLM

Традиционное дообучение невозможно для LLM, поскольку они содержат миллиарды параметров и весят сотни гигабайт. Не у всех есть доступ к такой вычислительной инфраструктуре.

Вот 5 оптимальных способов дообучения LLM:

1) LoRA — вместо того чтобы дообучать всю матрицу весов W, рядом добавляются две обучаемые low-rank матрицы A и B. Все изменения идут через них. Памяти — на порядок меньше (буквально мегабайты).

2) LoRA-FA — Да, LoRA экономит параметры, но прожорлива к активациям. FA = Frozen A — матрица A не обучается, двигаем только B. Получается ещё легче по памяти.

3) VeRA — держит свои A и B для каждого слоя. VeRA идёт дальше — A и B фиксируются случайно и шарятся между слоями. Вместо матриц обучаются векторные скейлы (b, d) по слоям. Минимализм.

4) Delta-LoRA — Идея: не просто обучать A и B, а следить за разницей (delta) между их произведениями на соседних итерациях. Эта дельта прибавляется к W. Такой "косвенный" fine-tuning базовых весов.

5) LoRA+ — В оригинальной LoRA A и B обновляются с одинаковым learning rate. В LoRA+ авторы подняли LR для B — и получили стабильнее и быстрее сходимость. Просто, но работает.

👉 @DataSciencegx
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/DataSciencegx/178
Create:
Last Update:

5 техник дообучения LLM

Традиционное дообучение невозможно для LLM, поскольку они содержат миллиарды параметров и весят сотни гигабайт. Не у всех есть доступ к такой вычислительной инфраструктуре.

Вот 5 оптимальных способов дообучения LLM:

1) LoRA — вместо того чтобы дообучать всю матрицу весов W, рядом добавляются две обучаемые low-rank матрицы A и B. Все изменения идут через них. Памяти — на порядок меньше (буквально мегабайты).

2) LoRA-FA — Да, LoRA экономит параметры, но прожорлива к активациям. FA = Frozen A — матрица A не обучается, двигаем только B. Получается ещё легче по памяти.

3) VeRA — держит свои A и B для каждого слоя. VeRA идёт дальше — A и B фиксируются случайно и шарятся между слоями. Вместо матриц обучаются векторные скейлы (b, d) по слоям. Минимализм.

4) Delta-LoRA — Идея: не просто обучать A и B, а следить за разницей (delta) между их произведениями на соседних итерациях. Эта дельта прибавляется к W. Такой "косвенный" fine-tuning базовых весов.

5) LoRA+ — В оригинальной LoRA A и B обновляются с одинаковым learning rate. В LoRA+ авторы подняли LR для B — и получили стабильнее и быстрее сходимость. Просто, но работает.

👉 @DataSciencegx

BY Data Portal | Data Science & Машиннное обучение


Share with your friend now:
tgoop.com/DataSciencegx/178

View MORE
Open in Telegram


Telegram News

Date: |

It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Telegram Channels requirements & features The Standard Channel While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. fire bomb molotov November 18 Dylan Hollingsworth yau ma tei
from us


Telegram Data Portal | Data Science & Машиннное обучение
FROM American