COMPLEXSYS Telegram 5966
Human Mobility in Epidemic Modeling

Human mobility forms the backbone of contact patterns through which infectious diseases propagate, fundamentally shaping the spatio-temporal dynamics of epidemics and pandemics. While traditional models are often based on the assumption that all individuals have the same probability of infecting every other individual in the population, a so-called random homogeneous mixing, they struggle to capture the complex and heterogeneous nature of real-world human interactions. Recent advancements in data-driven methodologies and computational capabilities have unlocked the potential of integrating high-resolution human mobility data into epidemic modeling, significantly improving the accuracy, timeliness, and applicability of epidemic risk assessment, contact tracing, and intervention strategies. This review provides a comprehensive synthesis of the current landscape in human mobility-informed epidemic modeling. We explore diverse sources and representations of human mobility data, and then examine the behavioral and structural roles of mobility and contact in shaping disease transmission dynamics. Furthermore, the review spans a wide range of epidemic modeling approaches, ranging from classical compartmental models to network-based, agent-based, and machine learning models. And we also discuss how mobility integration enhances risk management and response strategies during epidemics. By synthesizing these insights, the review can serve as a foundational resource for researchers and practitioners, bridging the gap between epidemiological theory and the dynamic complexities of human interaction while charting clear directions for future research.

https://www.arxiv.org/abs/2507.22799



tgoop.com/ComplexSys/5966
Create:
Last Update:

Human Mobility in Epidemic Modeling

Human mobility forms the backbone of contact patterns through which infectious diseases propagate, fundamentally shaping the spatio-temporal dynamics of epidemics and pandemics. While traditional models are often based on the assumption that all individuals have the same probability of infecting every other individual in the population, a so-called random homogeneous mixing, they struggle to capture the complex and heterogeneous nature of real-world human interactions. Recent advancements in data-driven methodologies and computational capabilities have unlocked the potential of integrating high-resolution human mobility data into epidemic modeling, significantly improving the accuracy, timeliness, and applicability of epidemic risk assessment, contact tracing, and intervention strategies. This review provides a comprehensive synthesis of the current landscape in human mobility-informed epidemic modeling. We explore diverse sources and representations of human mobility data, and then examine the behavioral and structural roles of mobility and contact in shaping disease transmission dynamics. Furthermore, the review spans a wide range of epidemic modeling approaches, ranging from classical compartmental models to network-based, agent-based, and machine learning models. And we also discuss how mobility integration enhances risk management and response strategies during epidemics. By synthesizing these insights, the review can serve as a foundational resource for researchers and practitioners, bridging the gap between epidemiological theory and the dynamic complexities of human interaction while charting clear directions for future research.

https://www.arxiv.org/abs/2507.22799

BY Complex Systems Studies




Share with your friend now:
tgoop.com/ComplexSys/5966

View MORE
Open in Telegram


Telegram News

Date: |

Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October. You can invite up to 200 people from your contacts to join your channel as the next step. Select the users you want to add and click “Invite.” You can skip this step altogether. Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. Avoid compound hashtags that consist of several words. If you have a hashtag like #marketingnewsinusa, split it into smaller hashtags: “#marketing, #news, #usa.
from us


Telegram Complex Systems Studies
FROM American