Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ComplexSys/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Complex Systems Studies@ComplexSys P.5713
COMPLEXSYS Telegram 5713
A First Course in Monte Carlo Methods

https://arxiv.org/abs/2405.16359

This is a concise mathematical introduction to Monte Carlo methods, a rich family of algorithms with far-reaching applications in science and engineering. Monte Carlo methods are an exciting subject for mathematical statisticians and computational and applied mathematicians: the design and analysis of modern algorithms are rooted in a broad mathematical toolbox that includes ergodic theory of Markov chains, Hamiltonian dynamical systems, transport maps, stochastic differential equations, information theory, optimization, Riemannian geometry, and gradient flows, among many others. These lecture notes celebrate the breadth of mathematical ideas that have led to tangible advancements in Monte Carlo methods and their applications. To accommodate a diverse audience, the level of mathematical rigor varies from chapter to chapter, giving only an intuitive treatment to the most technically demanding subjects. The aim is not to be comprehensive or encyclopedic, but rather to illustrate some key principles in the design and analysis of Monte Carlo methods through a carefully-crafted choice of topics that emphasizes timeless over timely ideas. Algorithms are presented in a way that is conducive to conceptual understanding and mathematical analysis -- clarity and intuition are favored over state-of-the-art implementations that are harder to comprehend or rely on ad-hoc heuristics. To help readers navigate the expansive landscape of Monte Carlo methods, each algorithm is accompanied by a summary of its pros and cons, and by a discussion of the type of problems for which they are most useful. The presentation is self-contained, and therefore adequate for self-guided learning or as a teaching resource. Each chapter contains a section with bibliographic remarks that will be useful for those interested in conducting research on Monte Carlo methods and their applications.
👍9



tgoop.com/ComplexSys/5713
Create:
Last Update:

A First Course in Monte Carlo Methods

https://arxiv.org/abs/2405.16359

This is a concise mathematical introduction to Monte Carlo methods, a rich family of algorithms with far-reaching applications in science and engineering. Monte Carlo methods are an exciting subject for mathematical statisticians and computational and applied mathematicians: the design and analysis of modern algorithms are rooted in a broad mathematical toolbox that includes ergodic theory of Markov chains, Hamiltonian dynamical systems, transport maps, stochastic differential equations, information theory, optimization, Riemannian geometry, and gradient flows, among many others. These lecture notes celebrate the breadth of mathematical ideas that have led to tangible advancements in Monte Carlo methods and their applications. To accommodate a diverse audience, the level of mathematical rigor varies from chapter to chapter, giving only an intuitive treatment to the most technically demanding subjects. The aim is not to be comprehensive or encyclopedic, but rather to illustrate some key principles in the design and analysis of Monte Carlo methods through a carefully-crafted choice of topics that emphasizes timeless over timely ideas. Algorithms are presented in a way that is conducive to conceptual understanding and mathematical analysis -- clarity and intuition are favored over state-of-the-art implementations that are harder to comprehend or rely on ad-hoc heuristics. To help readers navigate the expansive landscape of Monte Carlo methods, each algorithm is accompanied by a summary of its pros and cons, and by a discussion of the type of problems for which they are most useful. The presentation is self-contained, and therefore adequate for self-guided learning or as a teaching resource. Each chapter contains a section with bibliographic remarks that will be useful for those interested in conducting research on Monte Carlo methods and their applications.

BY Complex Systems Studies




Share with your friend now:
tgoop.com/ComplexSys/5713

View MORE
Open in Telegram


Telegram News

Date: |

The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information. Select: Settings – Manage Channel – Administrators – Add administrator. From your list of subscribers, select the correct user. A new window will appear on the screen. Check the rights you’re willing to give to your administrator. A few years ago, you had to use a special bot to run a poll on Telegram. Now you can easily do that yourself in two clicks. Hit the Menu icon and select “Create Poll.” Write your question and add up to 10 options. Running polls is a powerful strategy for getting feedback from your audience. If you’re considering the possibility of modifying your channel in any way, be sure to ask your subscribers’ opinions first. Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October.
from us


Telegram Complex Systems Studies
FROM American