CODEPROGRAMMER Telegram 3769
This media is not supported in your browser
VIEW IN TELEGRAM
๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘8โค7



tgoop.com/CodeProgrammer/3769
Create:
Last Update:

๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Machine Learning with Python


Share with your friend now:
tgoop.com/CodeProgrammer/3769

View MORE
Open in Telegram


Telegram News

Date: |

The Standard Channel Matt Hussey, editorial director at NEAR Protocol also responded to this news with โ€œ#meIRLโ€. Just as you search โ€œBear Market Screamingโ€ in Telegram, you will see a Pepe frog yelling as the groupโ€™s featured image. Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. Members can post their voice notes of themselves screaming. Interestingly, the group doesnโ€™t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn.
from us


Telegram Machine Learning with Python
FROM American