CODEPROGRAMMER Telegram 3562
πŸ”° How to become a data scientist in 2025?

πŸ‘¨πŸ»β€πŸ’» If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


πŸ”’ Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

βœ… Linear algebra: matrices, vectors, eigenvalues.

πŸ”— Course: MIT 18.06 Linear Algebra


βœ… Calculus: derivative, integral, optimization.

πŸ”— Course: MIT Single Variable Calculus


βœ… Statistics and probability: Bayes' theorem, hypothesis testing.

πŸ”— Course: Statistics 110

βž–βž–βž–βž–βž–

πŸ”’ Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

βœ… Python: Pandas, NumPy, Matplotlib libraries

πŸ”— Course: FreeCodeCamp Python Course

βœ… SQL language: Join commands, Window functions, query optimization.

πŸ”— Course: Stanford SQL Course

βœ… Data structures and algorithms: arrays, linked lists, trees.

πŸ”— Course: MIT Introduction to Algorithms

βž–βž–βž–βž–βž–

πŸ”’ Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

βœ… Data cleaning: Working with missing values ​​and detecting outliers.

πŸ”— Course: Data Cleaning

βœ… Data visualization: Matplotlib, Seaborn, Tableau

πŸ”— Course: Data Visualization Tutorial

βž–βž–βž–βž–βž–

πŸ”’ Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

βœ… Supervised learning: regression, classification.

βœ… Unsupervised learning: clustering, PCA, anomaly detection.

βœ… Deep learning: neural networks, CNN, RNN


πŸ”— Course: CS229: Machine Learning

βž–βž–βž–βž–βž–

πŸ”’ Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

βœ… Big Data Tools: Hadoop, Spark, Dask

βœ… Cloud platforms: AWS, GCP, Azure

πŸ”— Course: Data Engineering

βž–βž–βž–βž–βž–

πŸ”’ Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

βœ… Kaggle competitions: solving real-world challenges.

βœ… End-to-End projects: data collection, modeling, implementation.

βœ… GitHub: Publish your projects on GitHub.

πŸ”— Platform: KaggleπŸ”— Platform: ods.ai

βž–βž–βž–βž–βž–

πŸ”’ Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

βœ… MLOps training: model versioning, monitoring, model retraining.

βœ… Deployment models: Flask, FastAPI, Docker

πŸ”— Course: Stanford MLOps Course

βž–βž–βž–βž–βž–

πŸ”’ Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

βœ… Read scientific articles: arXiv, Google Scholar

βœ… Connect with the data community:

πŸ”— Site: Papers with code
πŸ”— Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://www.tgoop.com/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘35❀18πŸ‘1



tgoop.com/CodeProgrammer/3562
Create:
Last Update:

πŸ”° How to become a data scientist in 2025?

πŸ‘¨πŸ»β€πŸ’» If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


πŸ”’ Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

βœ… Linear algebra: matrices, vectors, eigenvalues.

πŸ”— Course: MIT 18.06 Linear Algebra


βœ… Calculus: derivative, integral, optimization.

πŸ”— Course: MIT Single Variable Calculus


βœ… Statistics and probability: Bayes' theorem, hypothesis testing.

πŸ”— Course: Statistics 110

βž–βž–βž–βž–βž–

πŸ”’ Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

βœ… Python: Pandas, NumPy, Matplotlib libraries

πŸ”— Course: FreeCodeCamp Python Course

βœ… SQL language: Join commands, Window functions, query optimization.

πŸ”— Course: Stanford SQL Course

βœ… Data structures and algorithms: arrays, linked lists, trees.

πŸ”— Course: MIT Introduction to Algorithms

βž–βž–βž–βž–βž–

πŸ”’ Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

βœ… Data cleaning: Working with missing values ​​and detecting outliers.

πŸ”— Course: Data Cleaning

βœ… Data visualization: Matplotlib, Seaborn, Tableau

πŸ”— Course: Data Visualization Tutorial

βž–βž–βž–βž–βž–

πŸ”’ Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

βœ… Supervised learning: regression, classification.

βœ… Unsupervised learning: clustering, PCA, anomaly detection.

βœ… Deep learning: neural networks, CNN, RNN


πŸ”— Course: CS229: Machine Learning

βž–βž–βž–βž–βž–

πŸ”’ Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

βœ… Big Data Tools: Hadoop, Spark, Dask

βœ… Cloud platforms: AWS, GCP, Azure

πŸ”— Course: Data Engineering

βž–βž–βž–βž–βž–

πŸ”’ Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

βœ… Kaggle competitions: solving real-world challenges.

βœ… End-to-End projects: data collection, modeling, implementation.

βœ… GitHub: Publish your projects on GitHub.

πŸ”— Platform: KaggleπŸ”— Platform: ods.ai

βž–βž–βž–βž–βž–

πŸ”’ Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

βœ… MLOps training: model versioning, monitoring, model retraining.

βœ… Deployment models: Flask, FastAPI, Docker

πŸ”— Course: Stanford MLOps Course

βž–βž–βž–βž–βž–

πŸ”’ Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

βœ… Read scientific articles: arXiv, Google Scholar

βœ… Connect with the data community:

πŸ”— Site: Papers with code
πŸ”— Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://www.tgoop.com/CodeProgrammer

BY Machine Learning with Python


Share with your friend now:
tgoop.com/CodeProgrammer/3562

View MORE
Open in Telegram


Telegram News

Date: |

Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Judge Hui described Ng as inciting others to β€œcommit a massacre” with three posts teaching people to make β€œtoxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was β€œrather serious,” the court said. Matt Hussey, editorial director at NEAR Protocol also responded to this news with β€œ#meIRL”. Just as you search β€œBear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn.
from us


Telegram Machine Learning with Python
FROM American