CODEPROGRAMMER Telegram 3436
🐼 20 of the most used Pandas + PDF functions

πŸ‘¨πŸ»β€πŸ’» The first time I used Pandas, I was supposed to quickly clean and organize a raw and complex dataset with the help of Pandas functions. Using the groupby function, I was able to categorize the data and get in-depth analysis of customer behavior. Best of all, it was when I used loc and iloc that I could easily filter the data.

βœ”οΈ Since then I decided to prepare a list of the most used Pandas functions that I use on a daily basis. Now this list is ready! In the following, I will introduce 20 of the best and most used Pandas functions:



πŸ³οΈβ€πŸŒˆ read_csv(): Fast data upload from CSV files

πŸ³οΈβ€πŸŒˆ head(): look at the first five rows of the database to start..

πŸ³οΈβ€πŸŒˆ info(): Checking data structure such as data type and empty values.

πŸ³οΈβ€πŸŒˆ describe(): Generate descriptive statistics for numeric columns.

πŸ³οΈβ€πŸŒˆ loc[ ]: accesses rows and columns by label or condition.

πŸ³οΈβ€πŸŒˆ iloc[ ]: Access data by row number.

πŸ³οΈβ€πŸŒˆ merge(): Merge dataframes with common columns.

πŸ³οΈβ€πŸŒˆ groupby(): Grouping for easier analysis.

πŸ³οΈβ€πŸŒˆ pivot_table(): Summarize data in pivot table format.

πŸ³οΈβ€πŸŒˆ to_csv(): Save data as a CSV file.

πŸ³οΈβ€πŸŒˆ pd.concat(): Concatenate multiple dataframes in rows or columns.

πŸ³οΈβ€πŸŒˆ pd.melt(): Convert wide format data to long format.

πŸ³οΈβ€πŸŒˆ pd.pivot_table(): Create a pivot table with multiple levels.

πŸ³οΈβ€πŸŒˆ pd.cut(): Split the data into specific intervals.

πŸ³οΈβ€πŸŒˆ pd.qcut(): Sort data by percentage.

πŸ³οΈβ€πŸŒˆ pd.merge(): Merge data in database style for advanced linking.

πŸ³οΈβ€πŸŒˆ DataFrame.apply(): Apply a custom function to the data.

πŸ³οΈβ€πŸŒˆ DataFrame.groupby(): Analyze grouped data.

πŸ³οΈβ€πŸŒˆ DataFrame.drop_duplicates(): Drop duplicate rows.

πŸ³οΈβ€πŸŒˆ DataFrame.to_excel(): Save data directly to Excel file.


β”Œ 🐼 Pandas Functions
β””
πŸ“„ PDF

#MachineLearning #DeepLearning #BigData #Datascience #ML #Pandas #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics #LLMs #AIagents

http://www.tgoop.com/codeprogrammer ⭐️
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/CodeProgrammer/3436
Create:
Last Update:

🐼 20 of the most used Pandas + PDF functions

πŸ‘¨πŸ»β€πŸ’» The first time I used Pandas, I was supposed to quickly clean and organize a raw and complex dataset with the help of Pandas functions. Using the groupby function, I was able to categorize the data and get in-depth analysis of customer behavior. Best of all, it was when I used loc and iloc that I could easily filter the data.

βœ”οΈ Since then I decided to prepare a list of the most used Pandas functions that I use on a daily basis. Now this list is ready! In the following, I will introduce 20 of the best and most used Pandas functions:



πŸ³οΈβ€πŸŒˆ read_csv(): Fast data upload from CSV files

πŸ³οΈβ€πŸŒˆ head(): look at the first five rows of the database to start..

πŸ³οΈβ€πŸŒˆ info(): Checking data structure such as data type and empty values.

πŸ³οΈβ€πŸŒˆ describe(): Generate descriptive statistics for numeric columns.

πŸ³οΈβ€πŸŒˆ loc[ ]: accesses rows and columns by label or condition.

πŸ³οΈβ€πŸŒˆ iloc[ ]: Access data by row number.

πŸ³οΈβ€πŸŒˆ merge(): Merge dataframes with common columns.

πŸ³οΈβ€πŸŒˆ groupby(): Grouping for easier analysis.

πŸ³οΈβ€πŸŒˆ pivot_table(): Summarize data in pivot table format.

πŸ³οΈβ€πŸŒˆ to_csv(): Save data as a CSV file.

πŸ³οΈβ€πŸŒˆ pd.concat(): Concatenate multiple dataframes in rows or columns.

πŸ³οΈβ€πŸŒˆ pd.melt(): Convert wide format data to long format.

πŸ³οΈβ€πŸŒˆ pd.pivot_table(): Create a pivot table with multiple levels.

πŸ³οΈβ€πŸŒˆ pd.cut(): Split the data into specific intervals.

πŸ³οΈβ€πŸŒˆ pd.qcut(): Sort data by percentage.

πŸ³οΈβ€πŸŒˆ pd.merge(): Merge data in database style for advanced linking.

πŸ³οΈβ€πŸŒˆ DataFrame.apply(): Apply a custom function to the data.

πŸ³οΈβ€πŸŒˆ DataFrame.groupby(): Analyze grouped data.

πŸ³οΈβ€πŸŒˆ DataFrame.drop_duplicates(): Drop duplicate rows.

πŸ³οΈβ€πŸŒˆ DataFrame.to_excel(): Save data directly to Excel file.


β”Œ 🐼 Pandas Functions
β””
πŸ“„ PDF

#MachineLearning #DeepLearning #BigData #Datascience #ML #Pandas #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics #LLMs #AIagents

http://www.tgoop.com/codeprogrammer ⭐️

BY Python | Machine Learning | Coding | R




Share with your friend now:
tgoop.com/CodeProgrammer/3436

View MORE
Open in Telegram


Telegram News

Date: |

Concise Hashtags Select β€œNew Channel” How to create a business channel on Telegram? (Tutorial) Image: Telegram.
from us


Telegram Python | Machine Learning | Coding | R
FROM American