CODEPROGRAMMER Telegram 2338
Python | Machine Learning | Coding | R
🖥 Text-to-Speech with PyTorch https://www.tgoop.com/CodeProgrammer
🖥 Text-to-Speech with PyTorch

import torchaudio
import torch
import matplotlib.pyplot as plt
import IPython.display

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device) # Move model to the desired device
vocoder = bundle.get_vocoder().to(device) # Move model to the desired device

text = " My first text to speech!"

with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device) # Move processed text data to the device
lengths = lengths.to(device) # Move lengths data to the device
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)


fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto") # Display the generated spectrogram
ax2.plot(waveforms[0].cpu().detach()) # Display the generated waveform7. Play the generated audio using IPython.display.Audio
IPython.display.Audio(waveforms[0:1].cpu(), rate=vocoder.sample_rate)

https://www.tgoop.com/CodeProgrammer
👍156



tgoop.com/CodeProgrammer/2338
Create:
Last Update:

🖥 Text-to-Speech with PyTorch

import torchaudio
import torch
import matplotlib.pyplot as plt
import IPython.display

bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH

processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device) # Move model to the desired device
vocoder = bundle.get_vocoder().to(device) # Move model to the desired device

text = " My first text to speech!"

with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device) # Move processed text data to the device
lengths = lengths.to(device) # Move lengths data to the device
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)


fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto") # Display the generated spectrogram
ax2.plot(waveforms[0].cpu().detach()) # Display the generated waveform7. Play the generated audio using IPython.display.Audio
IPython.display.Audio(waveforms[0:1].cpu(), rate=vocoder.sample_rate)

https://www.tgoop.com/CodeProgrammer

BY Python | Machine Learning | Coding | R




Share with your friend now:
tgoop.com/CodeProgrammer/2338

View MORE
Open in Telegram


Telegram News

Date: |

The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. The Standard Channel The court said the defendant had also incited people to commit public nuisance, with messages calling on them to take part in rallies and demonstrations including at Hong Kong International Airport, to block roads and to paralyse the public transportation system. Various forms of protest promoted on the messaging platform included general strikes, lunchtime protests and silent sit-ins. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. With the “Bear Market Screaming Therapy Group,” we’ve now transcended language.
from us


Telegram Python | Machine Learning | Coding | R
FROM American