CODEPROGRAMMER Telegram 2333
👱‍♂️ Creating Face Swaps with Python and OpenCV

Step 1: Face Detection
import cv2
def detect_face(image_path):
# Load the face detection classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# Read and convert the image to grayscale
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)

# Assuming there's only one face in the image, return its coordinates
if len(faces) == 1:
return faces[0]
else:
return None


Step 2: Swapping Faces

def main():
# Paths to the input images
image_path_1 = 'path_to_image1.jpg'
image_path_2 = 'path_to_image2.jpg'

# Detect the face in the second image
face_coords_2 = detect_face(image_path_2)
if face_coords_2 is None:
print("No face found in the second image.")
return

# Load and resize the source face
image_1 = cv2.imread(image_path_1)
face_width, face_height = face_coords_2[2], face_coords_2[3]
image_1_resized = cv2.resize(image_1, (face_width, face_height))

# Extract the target face region from the second image
image_2 = cv2.imread(image_path_2)
roi = image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width]

# Flip the target face horizontally
reflected_roi = cv2.flip(roi, 1)

# Blend the two faces together
alpha = 0.7
blended_image = cv2.addWeighted(image_1_resized, alpha, reflected_roi, 1 - alpha, 0)

# Replace the target face region with the blended image
image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width] = blended_image

# Display the result
cv2.imshow('Blended Image', image_2)
cv2.waitKey(0)
cv2.destroyAllWindows()

if name == "main":
main()



https://www.tgoop.com/CodeProgrammer
More reaction please ⭐️💐⭐️
28👍8💯3



tgoop.com/CodeProgrammer/2333
Create:
Last Update:

👱‍♂️ Creating Face Swaps with Python and OpenCV

Step 1: Face Detection
import cv2
def detect_face(image_path):
# Load the face detection classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# Read and convert the image to grayscale
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)

# Assuming there's only one face in the image, return its coordinates
if len(faces) == 1:
return faces[0]
else:
return None


Step 2: Swapping Faces

def main():
# Paths to the input images
image_path_1 = 'path_to_image1.jpg'
image_path_2 = 'path_to_image2.jpg'

# Detect the face in the second image
face_coords_2 = detect_face(image_path_2)
if face_coords_2 is None:
print("No face found in the second image.")
return

# Load and resize the source face
image_1 = cv2.imread(image_path_1)
face_width, face_height = face_coords_2[2], face_coords_2[3]
image_1_resized = cv2.resize(image_1, (face_width, face_height))

# Extract the target face region from the second image
image_2 = cv2.imread(image_path_2)
roi = image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width]

# Flip the target face horizontally
reflected_roi = cv2.flip(roi, 1)

# Blend the two faces together
alpha = 0.7
blended_image = cv2.addWeighted(image_1_resized, alpha, reflected_roi, 1 - alpha, 0)

# Replace the target face region with the blended image
image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width] = blended_image

# Display the result
cv2.imshow('Blended Image', image_2)
cv2.waitKey(0)
cv2.destroyAllWindows()

if name == "main":
main()



https://www.tgoop.com/CodeProgrammer
More reaction please ⭐️💐⭐️

BY Python | Machine Learning | Coding | R


Share with your friend now:
tgoop.com/CodeProgrammer/2333

View MORE
Open in Telegram


Telegram News

Date: |

The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Polls
from us


Telegram Python | Machine Learning | Coding | R
FROM American