BDATASCIENCEM Telegram 2686
Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)
🔥378🥰4🤡2🤮1



tgoop.com/BDataScienceM/2686
Create:
Last Update:

Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)

BY ML-легушька




Share with your friend now:
tgoop.com/BDataScienceM/2686

View MORE
Open in Telegram


Telegram News

Date: |

As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail. 6How to manage your Telegram channel? Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. ZDNET RECOMMENDS Clear
from us


Telegram ML-легушька
FROM American