Warning: file_put_contents(aCache/aDaily/post/BDataScienceM/--): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
ML-легушька@BDataScienceM P.2686
BDATASCIENCEM Telegram 2686
Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)
🔥378🥰4🤡2🤮1



tgoop.com/BDataScienceM/2686
Create:
Last Update:

Зачем нам вся эта математика бахнем ML все и так заработает. Или нет?
Сегодня разберем следующую 'оптимизационную' задачу. Мы хотим найти максимум ф-ии f на некотором ограниченном домене, при это f отделима от нуля на этом домене и монотонна. В чем же сложность, если f - монотонная ф-ия? В том, что есть дополнительное условие - xf(x) <= b. Существуют задачи в индустрии, на которых завязано много денег и которые формулируются подобным образом. Фактически, нужно решить уравнение xf(x)=b.
Дополнительная проблема в том, что мы не знаем вид функции f, и даже не можем взять ее градиент. Все что мы можем - измерить значение f в некоторой точке. В оптимизации это называется оракулом нулевого порядка. Соответственно, оракул 1ого порядка - знаем значение функции и ее градиента, второго порядка - то же что и ранее + гессиан, и так далее.
Вспомним метод простой итерации. Как он формулируется? Нужно найти сжимающее отображение, которое в итоге будет сходиться к нужной точке. Однако алгоритмически подобрать сжимающее отображение не очень возможно. К счастью, тут его придумать просто.
Например, отображение g(x) = a* x + (1 - a) * b/f(x). Идейно понятно, почему оно сходится к решению - если x слишком большой, тогда b/f(x) < x, и мы его уменьшим, иначе увеличим. На картинке приведено доказательство, почему для этого отображения наше решение - неподвижная точка.
Почему это круто? Ну... Метод сходится геометрически, на практике за 4-5 итераций, что важно, если измерить значение функции f сложно. Подобную тактику можно использовать для подбора гиперпараметров каких-то моделей, если мы идейно представляем, как устроена зависимость лосса от конкретно этого гиперпараметра. Также подобный метод никак не привязан ко времени, и адаптируется, если ф-ия f между итерациями меняется, но не сильно.
Вот так простая математика позволяет зарабатывать деньги. Формальное доказательство что это сжимающее отображение приводить не буду ибо оно немного громоздкое и также следует из свойств метода простой итерации.
Также легко обобщается на стохастический случай, можете попробовать в комментариях :)

BY ML-легушька




Share with your friend now:
tgoop.com/BDataScienceM/2686

View MORE
Open in Telegram


Telegram News

Date: |

Concise According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau.
from us


Telegram ML-легушька
FROM American