🧩 SQLite Internal — визуализатор структуры .sqlite-файлов
Если ты хочешь понять внутреннюю структуру SQLite, то этот инструмент — находка. SQLite Internal — веб-приложение для интерактивного анализа .sqlite-файлов.
📝 Что умеет:
• Загрузи .sqlite и изучай структуру файла
• Визуализация страниц, заголовков и схем
• Всё работает локально в браузере
💡 Технологии:
• TypeScript, Tailwind CSS, Vite
• GitHub — invisal/sqlite-internal
🧪 Попробуй онлайн: https://sqlite-internal.pages.dev
#SQLite #DevTools #WebApp
@sqlhub
Если ты хочешь понять внутреннюю структуру SQLite, то этот инструмент — находка. SQLite Internal — веб-приложение для интерактивного анализа .sqlite-файлов.
📝 Что умеет:
• Загрузи .sqlite и изучай структуру файла
• Визуализация страниц, заголовков и схем
• Всё работает локально в браузере
💡 Технологии:
• TypeScript, Tailwind CSS, Vite
• GitHub — invisal/sqlite-internal
🧪 Попробуй онлайн: https://sqlite-internal.pages.dev
#SQLite #DevTools #WebApp
@sqlhub
📒 Awesome LangChain — коллекция лучших инструментов для работы с LLM.
В этом репозитории собраны 500+ проектов — порты на другие языки (Go, Java, Ruby), шаблоны для быстрого старта и даже готовые решения вроде DB GPT для приватного общения с данными.
Особенно выделяются:
▪️LangServe — развёртывание цепочек как REST API от создателей LangChain
▪️GPTCache — семантическое кеширование запросов к LLM
▪️SuperAGI — фреймворк для автономных агентов с продвинутым планированием
🤖 GitHub
@sqlhub
В этом репозитории собраны 500+ проектов — порты на другие языки (Go, Java, Ruby), шаблоны для быстрого старта и даже готовые решения вроде DB GPT для приватного общения с данными.
Особенно выделяются:
▪️LangServe — развёртывание цепочек как REST API от создателей LangChain
▪️GPTCache — семантическое кеширование запросов к LLM
▪️SuperAGI — фреймворк для автономных агентов с продвинутым планированием
🤖 GitHub
@sqlhub
Репозиторий данных с открытым исходным кодом для изучения, применения и решения реальных проблем в data science.
Это кратчайший путь к началу изучения науки о данных. Опытным специалистам, репозиторий поможет найти необходимые топики, которые удобно систематизированы.
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Golang
В базе данных Dolt (аналог Git, но для SQL-таблиц) после рефакторинга один из бенчмарков (types_scan) внезапно стал работать на 30% медленнее. Причина? Казалось бы, невинная строчка кода.
📉 Что произошло
Метод GetBytes() начал вызывать ReadBytes() у интерфейса ValueStore. Всё выглядело логично, пока не включили профилировщик Go и не обнаружили странную активность:
🔍 runtime.newobject вызывался слишком часто → программа делала много лишних аллокаций в куче.
📦 Где зарыта собака
func (vs nodeStore) ReadBytes(...) ...
Этот метод использовал приёмник по значению (vs nodeStore). Это значит, что вся структура копировалась при каждом вызове метода, даже если она большая.
🚑 Как пофиксили
Просто поменяли на приёмник по указателю:
func (vs *nodeStore) ReadBytes(...) ...
Вуаля — аллокейшны исчезли, производительность восстановилась.
🧠 Вывод
❗ Методы с приёмником по значению = риск лишнего копирования и аллокаций
🛠 Даже один маленький метод может резко замедлить ваш код
🔍 Профилировка в Go — мощный инструмент. Используй pprof!
Полный разбор в блоге DoltHub
Подробнее про Dolt
@golang_google
Please open Telegram to view this post
VIEW IN TELEGRAM
Дана таблица
users
:
CREATE TABLE users (
id SERIAL PRIMARY KEY,
name TEXT,
deleted_at TIMESTAMP
);
Вы выполняете:
SELECT COUNT(*) FROM users WHERE deleted_at = NULL;
deleted_at
не задано.Вопрос:
Что не так с запросом? Как правильно получить количество “неудалённых” пользователей?
Вопрос: В чем ошибка? И как надо правильно писать такой фильтр?
SELECT COUNT(*) FROM users WHERE deleted_at IS NULL;
Этот запрос корректно найдёт все строки, где в столбце deleted_at действительно отсутствует значение (т.е. он равен NULL), и посчитает их количество.
Итог:
Не используйте = или != для сравнения с NULL.
Используйте IS NULL для проверки на NULL.
Используйте IS NOT NULL для проверки на не NULL (если бы вам понадобилось посчитать удалённых пользователей, у которых deleted_at заполнено).
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
Это высокопроизводительный распределённый движок SQL для анализа больших объёмов данных в реальном времени. Основные характеристики:
Распределённая архитектура
Состоит из координатора и множества воркеров, которые параллельно выполняют фрагменты запросов, обеспечивая низкую задержку даже при обработке петабайтовых данных
GitHub
Поддержка ANSI SQL и UDF
Полноценная поддержка стандартного SQL с возможностью расширения набором пользовательских функций (UDF), агрегатов и аналитических функций.
Плагинные коннекторы
Из коробки доступны коннекторы к Hive (HDFS/S3), Cassandra, Kafka, MongoDB, MySQL, PostgreSQL, Elasticsearch и многим другим системам хранения. При желании можно написать собственный плагин
GitHub
.
Масштабируемость и отказоустойчивость
Горизонтальное масштабирование за счёт добавления воркеров, автоматическое перераспределение задач при выходе узлов из строя.
Удобство развёртывания
Можно собрать из исходников через Maven (./mvnw clean install), развернуть через Docker (официальный образ есть в папке docker/), или сразу использовать готовые пакеты на prestodb.io.
Клиенты и интеграции
Имеется CLI (presto-cli), JDBC/ODBC‑драйверы, REST API. Лёгко встраивается в BI‑инструменты и платформы визуализации.
Сферы применения
Ad‑hoc‑аналитика, интерактивные дашборды, federated query (объединение данных из разных источников), подготовка данных для машинного обучения.
https://github.com/prestodb/presto
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Нашел лучший сайт для изучения SQL
Хороший ресурс для освоения SQL — SQL Academy!
Это интерактивная платформа с практическими заданиями от ведущих российских компаний: ВКонтакте, Альфа-Банка, Сбера и других. Здесь найдётся всё, что нужно разработчикам, аналитикам, тестировщикам и студентам, интересующимся базами данных.интересующихся студентов.
Попробовать здесь
@sqlhub
Хороший ресурс для освоения SQL — SQL Academy!
Это интерактивная платформа с практическими заданиями от ведущих российских компаний: ВКонтакте, Альфа-Банка, Сбера и других. Здесь найдётся всё, что нужно разработчикам, аналитикам, тестировщикам и студентам, интересующимся базами данных.интересующихся студентов.
Попробовать здесь
@sqlhub
Возможности
- Прослушивание изменений в PostgreSQL в режиме реального времени.
- Поддержка нескольких слотов репликации.
- Удобный вывод в формате JSON.
- Готов к использованию в качестве сервиса.
Пример использования
1. Создаём слот репликации:
SELECT * FROM pg_create_logical_replication_slot('test_slot', 'wal2json');
2. Запускаем wal-listener:
wal-listener --dsn "host=localhost port=5432 user=postgres dbname=test" --slot test_slot
3. Получаем JSON-объекты при изменениях в базе данных.
https://github.com/ihippik/wal-listener
#devops #девопс #PostgreSQL #sql
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
## Условие задачи:
Дана таблица
user_events
со следующей структурой:
CREATE TABLE user_events (
user_id INT,
event_time TIMESTAMP,
event_type VARCHAR(50),
platform VARCHAR(50)
);
🎯 Каждая строка описывает событие пользователя:
-
user_id
— идентификатор пользователя,-
event_time
— время события,-
event_type
— тип события (`login`, purchase
, logout
, error
и т.д.),-
platform
— платформа (`iOS`, Android
, `Web`).Требуется:
1. Найти пользователей, которые:
- Выполнили покупку (`purchase`),
- Но не заходили в систему (`login`) в течение последних 7 дней перед покупкой.
2. Найти пользователей, у которых:
- Более 30% всех событий за последний месяц составляют события типа
error
.3. Рассчитать для каждого пользователя:
- Среднее время между входом (`login`) и следующим выходом (`logout`).
- Если
logout
отсутствует после login
— игнорировать такую сессию.---
## Дополнительные условия:
- Считайте, что данные могут быть объемными: миллионы строк.
- Решение должно быть оптимизировано: избегайте подзапросов в подзапросах без индексов, старайтесь минимизировать количество проходов по данным.
- Можно использовать оконные функции (`WINDOW FUNCTIONS`) и временные таблицы (`CTE`) для упрощения запросов.
- Платформу можно игнорировать в расчетах.
---
## Что оценивается:
- Умение использовать оконные функции и агрегаты.
- Умение правильно интерпретировать условия задачи в SQL-операции.
- Оптимизация запросов под большие объемы данных.
- Чистота, читаемость и структурированность кода SQL-запросов.
---
Примечание:
Эта задача проверяет как технические навыки работы с SQL, так и внимательность к деталям формулировки задачи. Небрежная реализация может дать неверные результаты, особенно на больших данных.
🔥 Подсказки и намёки для решения задачи
## Задание 1: Найти пользователей с покупками без логина за последние 7 дней
**Намёк:**
- Используйте оконную функцию
LAG()
или MAX()
с фильтрацией событий login
.- Для каждой покупки проверяйте, был ли
login
в пределах 7 дней до события purchase
.- Можно применить
LEFT JOIN
событий login
к событиям purchase
.## Задание 2: Найти пользователей с долей ошибок > 30%
**Намёк:**
- Используйте оконные функции
COUNT(*)
и SUM(CASE WHEN event_type = 'error' THEN 1 ELSE 0 END)
.- Постройте долю ошибок на основе всех событий пользователя за последние 30 дней (`WHERE event_time >= CURRENT_DATE - INTERVAL '30 days'`).
## Задание 3: Рассчитать среднее время между
login
и следующим logout
**Намёк:**
- Используйте оконную функцию
LEAD()
для поиска следующего события после login
.- Пара
login -> logout
должна иметь корректный порядок по времени.- Отбрасывайте случаи, где следующего
logout
нет или это событие другого типа.@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
🔍 Milvus — масштабируемая высокопроизводительная векторная БД для AI-приложений с нативной интеграцией с Kubernetes.
Проект написан на Go и C++ и оптимизирован для работы с миллиардами векторов в реальном времени. Помимо классических dense-векторов, Milvus поддерживает sparse-модели для полнотекстового поиска и гибридные запросы. Для локального тестирования есть облегченная версия, устанавливаемая через pip.
🤖 GitHub
@sqlhub
Проект написан на Go и C++ и оптимизирован для работы с миллиардами векторов в реальном времени. Помимо классических dense-векторов, Milvus поддерживает sparse-модели для полнотекстового поиска и гибридные запросы. Для локального тестирования есть облегченная версия, устанавливаемая через pip.
🤖 GitHub
@sqlhub
SQL Basics.pdf
102.8 KB
Внутри
— SQL для data analysis;
— SQL Joins;
— Оконные функции;
— Основы SQL.
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
NotebookLM теперь умеет делать подкасты на русском и других славянских языках
Новая функция позволяет превращать документы в аудио — можно генерировать как полезные, так и совсем абсурдные подкасты (пример в посте). Идеально, чтобы слушать вместо чтения, например, во время пробежки.
Озвучка на русском немного уступает английской, но звучит достойно.
🎧 Бесплатно, пробуем
Новая функция позволяет превращать документы в аудио — можно генерировать как полезные, так и совсем абсурдные подкасты (пример в посте). Идеально, чтобы слушать вместо чтения, например, во время пробежки.
Озвучка на русском немного уступает английской, но звучит достойно.
🎧 Бесплатно, пробуем
🚀Масштабная архитектура на базе, которая содержит 671 млрд параметров, что в 96 раз больше, чем у предыдущей версии Prover-V1.5 (7 млрд).
Построен на базе архитектуры «смеси экспертов» (MoE), что снижает затраты на обучение и повышает эффективность решения задач.
Модель заточена на формальное доказательство теорем с помощью языка программирования Lean 4, обеспечивая 100% логическую точность.
Lean 4 — это зависимо типизированный функциональный язык программирования и интерактивное средство доказательства теорем.
Результаты:
• Новая Sota( 88,9%) на MiniF2F-test.
• DeepSeek-Prover-V2 смогла доказать 49 теорем из 658.
Для тренировки использовались 8 млн синтетических примеров, созданных через рекурсивный поиск решений теорем.
🔍 Как это работает:
1) Разложение теорем: DeepSeek-V3 по prompt'у разбивает сложные задачи на подцели.
2) Формализация: Пошаговые рассуждения переводятся в доказательства на Lean 4.
3) Cold-start: Полученные цепочки рассуждений и формальные доказательства используются как начальные данные для обучения модели.
• 7 B — базовый вариант.
• 671 B — расширенная версия на базе DeepSeek-V3-Base.
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
Please open Telegram to view this post
VIEW IN TELEGRAM
Предположим что у нас есть два коннекта к базе (одной или нескольким, это не важно). Далее используя
io.Pipe()
создаём Reader
и Writer
, и используя CopyTo()
и CopyFrom()
переносим данные.
r, w := io.Pipe()
doneChan := make(chan struct{}, 1)
go func() {
defer close(doneChan)
_, err := db1.PgConn().CopyTo(ctx, w, `copy table1 to stdin binary`)
if err != nil {
slog.Error("error", "error", err)
return
}
_ = w.Close()
doneChan <- struct{}{}
}()
_, err = db2.PgConn().CopyFrom(ctx, r, `copy table1 from stdout binary`)
_ = r.Close()
select {
case <-doneChan:
case <-ctx.Done():
}
Вся прелесть тут в том что используем наиболее быстрый способ с точки зрения PostgreSQL.
Используя `copy (select * from where ... order by ... limit ...) to stdout `можем регулировать нагрузку на чтение, следить за прогрессом и управлять копированием данных.
В качестве
Reader
может выступать что угодно, хоть файл csv, хоть другая СУБД, но тогда данные придётся дополнительно конвертировать в формат понимаемый PostgreSQL - csv или tsv, и использовать copy ... from stdin (format csv)
.Нюанс:
copy ... from stdin binary
, binary
обязывает использовать одинаковые типы данных, нельзя будет integer
колонку перенести в колонку smallint
, если такое требуется, то параметр binary
надо опустить.Весь код тут. И ещё немного кода для вдохновения.
@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
## 7 полезных приёмов для Oracle SQL
Простые советы для Oracle SQL, которые помогут аналитикам данных прокачать свои запросы.
1) Фильтрованные (partial) индексы
В Oracle можно создавать индексы только для подмножества строк, чтобы ускорить выборку по популярным условиям.
2) Функциональные (function-based) индексы
Если фильтруете или джойните по функции, создайте индекс прямо по выражению:
3) GROUPING SETS, ROLLUP, CUBE
Для одновременной агрегации по нескольким группировкам без
4) Материализованные представления с QUERY REWRITE
В Oracle можно сделать автоматическую подмену сложного запроса предрасчитанным результатом (материализованным представлением):
Теперь запрос
5) WITH PL/SQL FUNCTION RESULT CACHE
Кэшируйте результат функции, чтобы при одинаковых входных данных не пересчитывать:
6) PARALLEL HINT для ускорения запросов
Явно указывайте параллельное выполнение запроса, чтобы задействовать несколько процессов:
7) DBMS_STATS.AUTO_SAMPLE_SIZE для сбора статистики
Используйте автоматический подбор размера выборки для более точной оптимизации плана выполнения:
• Совет: проверяйте планы выполнения через
@sqlhub
Простые советы для Oracle SQL, которые помогут аналитикам данных прокачать свои запросы.
1) Фильтрованные (partial) индексы
В Oracle можно создавать индексы только для подмножества строк, чтобы ускорить выборку по популярным условиям.
CREATE INDEX idx_orders_high_value
ON orders(order_date)
WHERE total_amount > 1000;
2) Функциональные (function-based) индексы
Если фильтруете или джойните по функции, создайте индекс прямо по выражению:
CREATE INDEX idx_orders_year
ON orders (EXTRACT(YEAR FROM order_date));
3) GROUPING SETS, ROLLUP, CUBE
Для одновременной агрегации по нескольким группировкам без
UNION ALL
:
SELECT region, category, SUM(sales) AS total
FROM sales
GROUP BY ROLLUP (region, category);
4) Материализованные представления с QUERY REWRITE
В Oracle можно сделать автоматическую подмену сложного запроса предрасчитанным результатом (материализованным представлением):
CREATE MATERIALIZED VIEW mv_sales_by_month
BUILD IMMEDIATE
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE
AS
SELECT TRUNC(order_date, 'MM') AS month, SUM(total_amount) AS total
FROM orders
GROUP BY TRUNC(order_date, 'MM');
Теперь запрос
SELECT month, SUM(total_amount) FROM orders GROUP BY month;
автоматически будет использовать mv_sales_by_month
.5) WITH PL/SQL FUNCTION RESULT CACHE
Кэшируйте результат функции, чтобы при одинаковых входных данных не пересчитывать:
CREATE OR REPLACE FUNCTION get_tax_rate(p_region VARCHAR2)
RETURN NUMBER RESULT_CACHE RELIES_ON (tax_table) IS
v_rate NUMBER;
BEGIN
SELECT rate INTO v_rate FROM tax_table WHERE region = p_region;
RETURN v_rate;
END;
6) PARALLEL HINT для ускорения запросов
Явно указывайте параллельное выполнение запроса, чтобы задействовать несколько процессов:
SELECT /*+ PARALLEL(orders, 4) */ customer_id, SUM(total_amount)
FROM orders
GROUP BY customer_id;
7) DBMS_STATS.AUTO_SAMPLE_SIZE для сбора статистики
Используйте автоматический подбор размера выборки для более точной оптимизации плана выполнения:
EXEC DBMS_STATS.GATHER_TABLE_STATS('HR', 'ORDERS', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE);
• Совет: проверяйте планы выполнения через
DBMS_XPLAN.DISPLAY_CURSOR
, чтобы видеть реальные шаги запроса, а не только предполагаемые.@sqlhub
Media is too big
VIEW IN TELEGRAM
📜 История SQL — от лабораторной идеи до «языка данных» № 1
Как появился самый известный язык работы с базами, почему он едва не остался «Сиквелом» и какие любопытные факты о нём редко всплывают в учебниках.
1. Всё началось с таблицы на бумаге
- 1970 г. — британский математик Эдгар Ф. Кодд публикует культовую статью *“A Relational Model of Data for Large Shared Data Banks”*.
- В ней впервые прозвучала идея: хранить данные в виде связанных таблиц, а не как запутанные иерархии (IMS) или сетевые графы (Codasyl).
- Коллеги в IBM скептически называли это «бумагой на буквы», но разрешили сделать прототип, чтобы проверить утопию Кодда на практике.
2. SEQUEL — «английский» запрос к таблицам
- 1973–1974 гг. — в лаборатории IBM San José (ныне Almaden) двое молодых исследователей, Дональд Чемберлин и Рэймонд Бойс, берутся за проект System R.
- Чтобы обращаться к реляционным таблицам, они придумывают Structured English QUEry Language — SEQUEL.
- Ключевая фишка — запросы выглядят почти как английские предложения:
- В 1974‑м публикуют первую спецификацию; академики критикуют за «слишком поверхностный английский», но программисты в восторге.
3. Почему SEQUEL стал SQL
- Торговая марка “SEQUEL” уже принадлежала авиастроительной компании *Hawker Siddeley*.
- IBM, опасаясь суда, в 1976 г. официально отказывается от «E» и оставляет SQL (Structured Query Language).
- *Небольшая путаница осталась навсегда: кто‑то произносит «эс‑кью‑эл», кто‑то — «сиквел».*
4. Коммерческий взлёт
- 1978 | Первая демонстрация System R внутри IBM | показала, что SQL работает быстрее ожиданий |
- 1979 | Стартап Relational Software (позже Oracle**) выпускает **Oracle V2 — первый коммерческий SQL‑движок | IBM ещё не успела выйти на рынок
- 1981 | IBM выпускает SQL/DS для мейнфреймов | стандарт де‑факто закрепляется
- 1983 | Дебют DB2 — теперь SQL есть почти в каждом крупном банке
5. Стандартизация и эволюция
- ANSI SQL‑86 → SQL‑92 (появился `JOIN ... ON`) → SQL:1999 (рекурсия, триггеры) → SQL:2003 (XML) → … → SQL:2023 (JSON, property graphs).
- Каждые 3–5 лет комитет добавляет «модные» возможности, но 90 % повседневных запросов всё ещё укладываются в синтаксис 1980‑х.
6. Забавные факты, которые украсят small talk 🍸
1. NULL ≠ 0 и NULL ≠ NULL — «неизвестное значение» нарушает законы логики, за что его зовут *“пятой ногой”* реляционной алгебры.
2. `SELECT *` — наследие печати на станке. Звёздочка означала «все колонки», чтобы не писать их руками в 132‑символьных перфокартах.
3. Команда
4. В Oracle долго не было
5. Первый SQL‑вирус — червь *Slammer* (2003) — парализовал интернет за 10 минут через уязвимость в SQL Server 2000.
6. SQL — декларативный язык, но внутри СУБД каждый
7.Ф. Кодд публикуетпридумали позже, чемлабораторн Сначала удалять целую БД казалось слишком опасным.
7. Почему SQL живёт дольше модных NoSQL‑наследников
- Математическая база. Таблицы + операции Кодда образуют алгебру с предсказуемой оптимизацией.
- Стандарты и переносимость. Код двадцатилетней давности можно запустить в современной Postgres или MariaDB.
- Большая экосистема. От Excel‑плагинов до BigQuery — везде так или иначе поддерживается SQL‑диалект.
- Сопротивляемость моде. Каждый «убийца SQL» (MapReduce, GraphQL, документные БД) в итоге добавляет свой адаптер
Итог: SQL родился как эксперимент IBM, пережил смену названий и юридические баталии, но в итоге стал «лентой Мёбиуса» мира данных: можно зайти с любой стороны — и всё равно окажешься в
https://www.youtube.com/shorts/EuFjzuVHkHE
@sqlhub -подписаться
Как появился самый известный язык работы с базами, почему он едва не остался «Сиквелом» и какие любопытные факты о нём редко всплывают в учебниках.
1. Всё началось с таблицы на бумаге
- 1970 г. — британский математик Эдгар Ф. Кодд публикует культовую статью *“A Relational Model of Data for Large Shared Data Banks”*.
- В ней впервые прозвучала идея: хранить данные в виде связанных таблиц, а не как запутанные иерархии (IMS) или сетевые графы (Codasyl).
- Коллеги в IBM скептически называли это «бумагой на буквы», но разрешили сделать прототип, чтобы проверить утопию Кодда на практике.
2. SEQUEL — «английский» запрос к таблицам
- 1973–1974 гг. — в лаборатории IBM San José (ныне Almaden) двое молодых исследователей, Дональд Чемберлин и Рэймонд Бойс, берутся за проект System R.
- Чтобы обращаться к реляционным таблицам, они придумывают Structured English QUEry Language — SEQUEL.
- Ключевая фишка — запросы выглядят почти как английские предложения:
SELECT name, salary
FROM employees
WHERE dept = 'R&D';
- В 1974‑м публикуют первую спецификацию; академики критикуют за «слишком поверхностный английский», но программисты в восторге.
3. Почему SEQUEL стал SQL
- Торговая марка “SEQUEL” уже принадлежала авиастроительной компании *Hawker Siddeley*.
- IBM, опасаясь суда, в 1976 г. официально отказывается от «E» и оставляет SQL (Structured Query Language).
- *Небольшая путаница осталась навсегда: кто‑то произносит «эс‑кью‑эл», кто‑то — «сиквел».*
4. Коммерческий взлёт
- 1978 | Первая демонстрация System R внутри IBM | показала, что SQL работает быстрее ожиданий |
- 1979 | Стартап Relational Software (позже Oracle**) выпускает **Oracle V2 — первый коммерческий SQL‑движок | IBM ещё не успела выйти на рынок
- 1981 | IBM выпускает SQL/DS для мейнфреймов | стандарт де‑факто закрепляется
- 1983 | Дебют DB2 — теперь SQL есть почти в каждом крупном банке
5. Стандартизация и эволюция
- ANSI SQL‑86 → SQL‑92 (появился `JOIN ... ON`) → SQL:1999 (рекурсия, триггеры) → SQL:2003 (XML) → … → SQL:2023 (JSON, property graphs).
- Каждые 3–5 лет комитет добавляет «модные» возможности, но 90 % повседневных запросов всё ещё укладываются в синтаксис 1980‑х.
6. Забавные факты, которые украсят small talk 🍸
1. NULL ≠ 0 и NULL ≠ NULL — «неизвестное значение» нарушает законы логики, за что его зовут *“пятой ногой”* реляционной алгебры.
2. `SELECT *` — наследие печати на станке. Звёздочка означала «все колонки», чтобы не писать их руками в 132‑символьных перфокартах.
3. Команда
GO
в MS SQL Server не принадлежит стандарту SQL — это директива из старого клиента isql. 4. В Oracle долго не было
LIMIT,
а в MySQL —QL — от лабора Поэтому админы шутили: «истинный межплатформенный SQL — это `SELECT 1;`». 5. Первый SQL‑вирус — червь *Slammer* (2003) — парализовал интернет за 10 минут через уязвимость в SQL Server 2000.
6. SQL — декларативный язык, но внутри СУБД каждый
SELECT
превращается в процедурный план. 7.Ф. Кодд публикуетпридумали позже, чемлабораторн Сначала удалять целую БД казалось слишком опасным.
7. Почему SQL живёт дольше модных NoSQL‑наследников
- Математическая база. Таблицы + операции Кодда образуют алгебру с предсказуемой оптимизацией.
- Стандарты и переносимость. Код двадцатилетней давности можно запустить в современной Postgres или MariaDB.
- Большая экосистема. От Excel‑плагинов до BigQuery — везде так или иначе поддерживается SQL‑диалект.
- Сопротивляемость моде. Каждый «убийца SQL» (MapReduce, GraphQL, документные БД) в итоге добавляет свой адаптер
SELECT …
.Итог: SQL родился как эксперимент IBM, пережил смену названий и юридические баталии, но в итоге стал «лентой Мёбиуса» мира данных: можно зайти с любой стороны — и всё равно окажешься в
FROM
.https://www.youtube.com/shorts/EuFjzuVHkHE
@sqlhub -подписаться