Вот вам самая полезная инфографика для новичков, чтобы знать, как вы будете страдать красиво:
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
😱 Уже завтра — вебинар про AI-агентов! Мест почти не осталось
На вебинаре вы получите то, чего нет в открытых источниках — живой разбор, примеры и прямой диалог с экспертом. Но только если придёте.
➡️ Что будет:
— покажем структуру курса и ключевые модули
— обсудим вопросы, которые обычно остаются за кадром
— разберём реальные кейсы: как применять AI-агентов — от чат-ботов до систем поддержки решений
📅 Уже 23 июня в 19:00 МСК
🎙️ Ведёт Никита Зелинский — эксперт в AI и DS
👉 Зарегистрируйтесь заранее, чтобы не забыть:
https://clc.to/_lDV0Q
🫢 Для тех, кто дочитал до конца →промокод lucky, он даст −5.000₽ на курс
На вебинаре вы получите то, чего нет в открытых источниках — живой разбор, примеры и прямой диалог с экспертом. Но только если придёте.
➡️ Что будет:
— покажем структуру курса и ключевые модули
— обсудим вопросы, которые обычно остаются за кадром
— разберём реальные кейсы: как применять AI-агентов — от чат-ботов до систем поддержки решений
📅 Уже 23 июня в 19:00 МСК
🎙️ Ведёт Никита Зелинский — эксперт в AI и DS
👉 Зарегистрируйтесь заранее, чтобы не забыть:
https://clc.to/_lDV0Q
🫢 Для тех, кто дочитал до конца →
Чек-лист: как структурировать Data Science проект
Короче, вот вам такой чек-лист, его сохранили наши ДСеры, пользуйтесь — бесплатно:
📁 data-science-project/
├── 📁 data/
│ ├── 📁 raw/
│ ├── 📁 processed/
│ └── 📁 external/
├── 📁 notebooks/
│ ├── 📄explore_data.ipynb
│ ├── 📄 …
│ ├── 📄 traine.ipynb
│ └── 📄 evaluate.ipynb
├── 📁 src/
│ ├── 📁 data/
│ │ ├── 📄 load_data.py
│ │ ├── 📄 process_data.py
│ │ └── 📄 split_data.py
│ ├── 📁 features/
│ │ └── 📄select_feature.py
│ ├── 📁 models/
│ │ ├── 📄 train.py
│ │ ├── 📄 predict.py
│ │ └── 📄 evaluate.py
│ ├── 📁 visualizations/
│ │ └── 📄 plot_results.py
├── 📁 tests/
│ ├── 📄 test_models.py
│ └── 📄 test_visualise.py
├── 📁 reports/
│ ├── 📁 figures/
│ └── 📄 report.md
├── 📁 docs/
│ └── 📄 README.md
├── 📄 requirements.txt
├── 📄 .gitignore
└── 📄 LICENSE
Пояснение основных директорий:
1️⃣ data/: Хранит данные на разных этапах (необработанные, обработанные, внешние).
2️⃣ notebooks/: Ноутбуки для пошагового эксперимента (например, исследование данных, создание признаков).
3️⃣ src/: Python скрипты для модульных операций:
• data/: Загрузка, очистка и разделение данных.
• features/: Создание и отбор признаков.
• models/: Обучение модели, предсказания и оценка.
• visualizations/: Генерация графиков и визуальных выводов.
4️⃣ tests/: Юнит-тесты для проверки работы скриптов и пайплайнов.
5️⃣ reports/: Финальные отчёты, графики и визуализации.
6️⃣ docs/: Документация проекта и README.
❤️ — ставьте лайк если годно)
🔵 А это наш курс для тех, кто хочет прокачаться в ИИ → «AI-агенты для DS-специалистов»
Proglib Academy #оффер_мечты
Короче, вот вам такой чек-лист, его сохранили наши ДСеры, пользуйтесь — бесплатно:
📁 data-science-project/
├── 📁 data/
│ ├── 📁 raw/
│ ├── 📁 processed/
│ └── 📁 external/
├── 📁 notebooks/
│ ├── 📄explore_data.ipynb
│ ├── 📄 …
│ ├── 📄 traine.ipynb
│ └── 📄 evaluate.ipynb
├── 📁 src/
│ ├── 📁 data/
│ │ ├── 📄 load_data.py
│ │ ├── 📄 process_data.py
│ │ └── 📄 split_data.py
│ ├── 📁 features/
│ │ └── 📄select_feature.py
│ ├── 📁 models/
│ │ ├── 📄 train.py
│ │ ├── 📄 predict.py
│ │ └── 📄 evaluate.py
│ ├── 📁 visualizations/
│ │ └── 📄 plot_results.py
├── 📁 tests/
│ ├── 📄 test_models.py
│ └── 📄 test_visualise.py
├── 📁 reports/
│ ├── 📁 figures/
│ └── 📄 report.md
├── 📁 docs/
│ └── 📄 README.md
├── 📄 requirements.txt
├── 📄 .gitignore
└── 📄 LICENSE
Пояснение основных директорий:
1️⃣ data/: Хранит данные на разных этапах (необработанные, обработанные, внешние).
2️⃣ notebooks/: Ноутбуки для пошагового эксперимента (например, исследование данных, создание признаков).
3️⃣ src/: Python скрипты для модульных операций:
• data/: Загрузка, очистка и разделение данных.
• features/: Создание и отбор признаков.
• models/: Обучение модели, предсказания и оценка.
• visualizations/: Генерация графиков и визуальных выводов.
4️⃣ tests/: Юнит-тесты для проверки работы скриптов и пайплайнов.
5️⃣ reports/: Финальные отчёты, графики и визуализации.
6️⃣ docs/: Документация проекта и README.
❤️ — ставьте лайк если годно)
Proglib Academy #оффер_мечты
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Мышкой двинул на презе — уволен 🐶
Были у вас такие фейлы? Делитесь, послушаем👇
Proglib Academy #развлекалово
Были у вас такие фейлы? Делитесь, послушаем
Proglib Academy #развлекалово
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Режим агента (Agent mode) официально открыт для всех пользователей Visual Studio Code!
Это как напарник-программист, который сам решает задачи: копается в коде, правит файлы, запускает команды и чинит ошибки, пока всё не заработает.
Включить режим агента можно в Chat View, выбрав
Agent
в настройках chat.mode
и активировав chat.agent.enabled
. Если параметр не отображается — обновите VS Code до последней версии и перезапустите.Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🔐 10 хакерских скриптов на Python
Как насчёт того, чтобы заглянуть по ту сторону Python-разработки?
📌 В этом разборе — настоящие боевые техники, которые используют:
— самомодифицирующийся код
— перехват нажатий клавиш (keylogger)
— скрытые скриншоты экрана
— исполнение из RAM — без следов на диске
— маскировка под легитимные процессы
— обход антивирусов и мониторинга
⚠️ Всё — в образовательных целях. Эти приёмы помогают понять, как думает атакующий, и прокачать навыки кибербезопасности и защиты приложений.
👉 Подробнее в нашей новой статье: https://proglib.io/sh/Eu3Dm2GYbh
Proglib Academy #буст
Как насчёт того, чтобы заглянуть по ту сторону Python-разработки?
📌 В этом разборе — настоящие боевые техники, которые используют:
— самомодифицирующийся код
— перехват нажатий клавиш (keylogger)
— скрытые скриншоты экрана
— исполнение из RAM — без следов на диске
— маскировка под легитимные процессы
— обход антивирусов и мониторинга
⚠️ Всё — в образовательных целях. Эти приёмы помогают понять, как думает атакующий, и прокачать навыки кибербезопасности и защиты приложений.
👉 Подробнее в нашей новой статье: https://proglib.io/sh/Eu3Dm2GYbh
Proglib Academy #буст
Сейчас большинство представлений об ИИ ограничиваются одним агентом — моделькой, которая что-то предсказывает, генерирует или классифицирует.
Но реальный прорыв начинается, когда этих агентов становится несколько.
Когда они начинают взаимодействовать друг с другом.
Когда появляется координация, распределение ролей, память, планирование — всё это и есть мультиагентные системы (MAS).
— Microsoft делает язык DroidSpeak для общения между LLM
— Open Source-фреймворки вроде LangChain, AutoGen, CrewAI, LangGraph — бурно развиваются
— компании, включая МТС, уже применяют MAS в боевых задачах
🎓 На курсе мы подходим к этому практично:
Именно на третьем уроке вы впервые собираете не просто «умного бота», а живую систему из агентов, которая работает вместе — как команда.
Причём по-настоящему: врач, SQL-аналитик, travel-планировщик, Python-генератор, поисковик.
Please open Telegram to view this post
VIEW IN TELEGRAM
📚Напоминаем про наш полный курс «Самоучитель по Python для начинающих»
Мы написали и собрали для вас в одну подборку все 25 глав и 230 практических заданий!
🐍 Часть 1: Особенности, сферы применения, установка, онлайн IDE
🐍 Часть 2: Все, что нужно для изучения Python с нуля – книги, сайты, каналы и курсы
🐍 Часть 3: Типы данных: преобразование и базовые операции
🐍 Часть 4: Методы работы со строками
🐍 Часть 5: Методы работы со списками и списковыми включениями
🐍 Часть 6: Методы работы со словарями и генераторами словарей
🐍 Часть 7: Методы работы с кортежами
🐍 Часть 8: Методы работы со множествами
🐍 Часть 9: Особенности цикла for
🐍 Часть 10: Условный цикл while
🐍 Часть 11: Функции с позиционными и именованными аргументами
🐍 Часть 12: Анонимные функции
🐍 Часть 13: Рекурсивные функции
🐍 Часть 14: Функции высшего порядка, замыкания и декораторы
🐍 Часть 15: Методы работы с файлами и файловой системой
🐍 Часть 16: Регулярные выражения
🐍 Часть 17: Основы скрапинга и парсинга
🐍 Часть 18: Основы ООП – инкапсуляция и наследование
🐍 Часть 19: Основы ООП – абстракция и полиморфизм
🐍 Часть 20: Графический интерфейс на Tkinter
🐍 Часть 21: Основы разработки игр на Pygame
🐍 Часть 22: Основы работы с SQLite
🐍 Часть 23: Основы веб-разработки на Flask
🐍 Часть 24: Основы работы с NumPy
🐍 Часть 25: Основы анализа данных с Pandas
Мы написали и собрали для вас в одну подборку все 25 глав и 230 практических заданий!
🐍 Часть 1: Особенности, сферы применения, установка, онлайн IDE
🐍 Часть 2: Все, что нужно для изучения Python с нуля – книги, сайты, каналы и курсы
🐍 Часть 3: Типы данных: преобразование и базовые операции
🐍 Часть 4: Методы работы со строками
🐍 Часть 5: Методы работы со списками и списковыми включениями
🐍 Часть 6: Методы работы со словарями и генераторами словарей
🐍 Часть 7: Методы работы с кортежами
🐍 Часть 8: Методы работы со множествами
🐍 Часть 9: Особенности цикла for
🐍 Часть 10: Условный цикл while
🐍 Часть 11: Функции с позиционными и именованными аргументами
🐍 Часть 12: Анонимные функции
🐍 Часть 13: Рекурсивные функции
🐍 Часть 14: Функции высшего порядка, замыкания и декораторы
🐍 Часть 15: Методы работы с файлами и файловой системой
🐍 Часть 16: Регулярные выражения
🐍 Часть 17: Основы скрапинга и парсинга
🐍 Часть 18: Основы ООП – инкапсуляция и наследование
🐍 Часть 19: Основы ООП – абстракция и полиморфизм
🐍 Часть 20: Графический интерфейс на Tkinter
🐍 Часть 21: Основы разработки игр на Pygame
🐍 Часть 22: Основы работы с SQLite
🐍 Часть 23: Основы веб-разработки на Flask
🐍 Часть 24: Основы работы с NumPy
🐍 Часть 25: Основы анализа данных с Pandas
Proglib Academy #развлекалово
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Наткнулся на репу, которую обожают 300 000+ инженеров и HR-ы: The System Design Primer
• Конспект всего, что спрашивают на систем-дизайне — от CAP до CDN.
• Anki-карты для spaced-repetition (удобно учить в метро).
• Mock-интервью: готовые вопросы + чек-листы для разбора своих ответов.
• 25+ переводов, так что можно читать хоть на русском, хоть на бенгали.
• Реальные архитектуры Twitter, Uber, Netflix и др.
У нас, кстати, есть курс по архитектуре → «Архитектуры и шаблоны проектирования»
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⏰ STUMPY: умный анализ временных рядов
STUMPY — это мощная и масштабируемая библиотека Python для работы с временными рядами. Она эффективно вычисляет матричный профиль, который помогает находить ближайшие соседи для каждого подотрезка временного ряда.
С его помощью можно решать задачи:
✔️ Поиск повторяющихся паттернов.
✔️ Обнаружение аномалий.
✔️ Выделение ключевых подотрезков (shapelets).
✔️ Семантическая сегментация.
✔️ Анализ потоковых данных.
✔️ Быстрое приближённое вычисление матричных профилей.
✔️ Построение временных цепочек.
✔️ Краткое представление длинных временных рядов.
👉 Подробнее — в документации.
А это наш курс для тех, кто хочет прокачаться в ИИ → «AI-агенты для DS-специалистов»🙌
Proglib Academy #буст
STUMPY — это мощная и масштабируемая библиотека Python для работы с временными рядами. Она эффективно вычисляет матричный профиль, который помогает находить ближайшие соседи для каждого подотрезка временного ряда.
С его помощью можно решать задачи:
✔️ Поиск повторяющихся паттернов.
✔️ Обнаружение аномалий.
✔️ Выделение ключевых подотрезков (shapelets).
✔️ Семантическая сегментация.
✔️ Анализ потоковых данных.
✔️ Быстрое приближённое вычисление матричных профилей.
✔️ Построение временных цепочек.
✔️ Краткое представление длинных временных рядов.
👉 Подробнее — в документации.
А это наш курс для тех, кто хочет прокачаться в ИИ → «AI-агенты для DS-специалистов»
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯 Мы больше года строим мультиагентные системы
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:datarascals действует до 23:59 29 июня
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:
Как вам такой уровень требований?
❤️ — мечта рекрутера
🌚 — кошмар разработчика
👾 — ну хотя бы без требования «знания всех фреймворков»
Proglib Academy #междусобойчик
❤️ — мечта рекрутера
🌚 — кошмар разработчика
👾 — ну хотя бы без требования «знания всех фреймворков»
Proglib Academy #междусобойчик
Делаете предзаказы игр?
😢 — нет, как хорошо, что я
👾 — конечно, цены могут подняться
Proglib Academy #развлекалово
Please open Telegram to view this post
VIEW IN TELEGRAM