Ты можешь годами учить Python, но без понятных и прикладных проектов HR пройдёт мимо.
🔹 Работа с реальными данными
Проекты на pandas, numpy, matplotlib. Возьми датасет — сделай анализ, визуализацию, вывод.
Пример: «Исследование цен на недвижимость в Москве».
🔹 Парсинг и автоматизация
Скрипт, который собирает вакансии с hh и отправляет тебе в Telegram? Отлично.
Используй requests, BeautifulSoup, Selenium.
🔹 API и Telegram-боты
Покажи, что можешь работать с внешними сервисами. Flask/Django + FastAPI — must have.
Пример: Бот, который даёт рекомендации по фильмам через API КиноПоиска.
🧠 Как подать:
— Сделай лендинг на GitHub Pages: описание, скриншоты, ссылки на код.
— В README объясни: что это, зачем, как запускать.
— Покажи развитие: от первой версии до улучшений, что ты доработал.
Ты уже собираешь портфолио?
Задавайте вопросы и присылайте свои портфолио на разбор
Proglib Academy #оффер_мечты
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Сегодня стартует курс по AI-агентам!
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
Онбординг уже сегодня, но ещё можно вписаться — ПОСЛЕДНИЙ ШАНС это сделать.
Мы больше года собирали мультиагентные системы: экспериментировали, переделывали и в итоге — оформили всё в 5 плотных вебинаров.
😤 «А можно ли вообще научиться чему-то за 5 вебинаров?!»
Если вы хотите просто послушать — нет
Если хотите разбираться и делать — да
➡️ На курсе:
— мы не читаем слайдики, а работаем в коде в реальном времени
— можно задавать вопросы прямо на вебинаре
— после каждого вебинара есть домашка и поддержка в чате
И главное — вы получаете системное понимание, а не набор хаотичных туториалов.
⚡️Если вы думаете, что успеете потом — не успеете.
Старт сегодня:
— а те, кто вписался сейчас, будут вас опережать — в проектах, на грейде и в зарплате
Знакомьтесь, эксперт нашего курса:
Никита Зелинский — Chief Data Scientist МТС, Head of ML Platforms, руководитель центра компетенций по Data Science.
❗Стартуем сегодня — забронируй свое место
📘 Математика для Data Science: разложили по полочкам
Если вы давно откладывали математику «на потом» — это знак вернуться к базе.
➡️ Статья открывает большую серию, где разбирают всю нужную математику для дата-сайентиста:
— как читать математические обозначения: ℝ, ℕ, ℂ и другие,
— что такое комплексные числа и зачем они нужны в ML,
— как записывать векторы и матрицы,
— что такое сигма-нотация (∑) и пи-нотация (∏),
— зачем в Data Science нужен логарифм и как он упрощает работу с функциями.
Понятно объясняют, как работает каждый символ и зачем он в алгоритмах. Особенно пригодится тем, кто готовится к собесам или хочет лучше понимать, что творится под капотом моделей.🖕
📎 Статья
💬 А вы как считаете — стоит ли глубоко вникать в мат. нотацию на старте или лучше разбираться по мере надобности?
Proglib Academy #буст
Если вы давно откладывали математику «на потом» — это знак вернуться к базе.
— как читать математические обозначения: ℝ, ℕ, ℂ и другие,
— что такое комплексные числа и зачем они нужны в ML,
— как записывать векторы и матрицы,
— что такое сигма-нотация (∑) и пи-нотация (∏),
— зачем в Data Science нужен логарифм и как он упрощает работу с функциями.
Понятно объясняют, как работает каждый символ и зачем он в алгоритмах. Особенно пригодится тем, кто готовится к собесам или хочет лучше понимать, что творится под капотом моделей.
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM