По прошлому посту про реактивную горелку один из подписчиков задал очень хороший вопрос:
Зачем собирать такую гарелку-обогреватель, если можно просто сжечь бензин в тарелке и тепла будет столько же.
Действительно ли это так? Один из подвохов здесь заключается в том, что важно не количество тепла, а качество процесса и топлива.
▪️1. Тип топлива и его стоимость (Главный аргумент)
➖ «Просто сжечь бензин»: Вы используете дорогое, высокоочищенное топливо. Это как топить камин долларовыми купюрами — да, тепло будет, но экономически невыгодно.
➖Горелка с эжекцией: Она идеально подходит для сжигания дешевых, низкокачественных и часто бесплатных видов топлива:
— Отработанное моторное масло (отработка). Его просто выбрасывают или дорого утилизируют. Для такой горелки — это идеальное и бесплатное топливо.
— Солярка (дизельное топливо). Дешевле бензина.
— Мазут.
— Растительные масла.
Эта горелка — не про бензин, а про утилизацию отходов и экономию. Вы получаете тепло практически даром.
▪️2. Качество сгорания и безопасность
➖«Просто сжечь бензин»: Вы плеснули бензин в миску и поднесли спичку. Что получится?
Горит открытое горючее тело — чудовищная пожароопасность. Любая искра, перевернутая емкость — и пожар.
Копоть и вредные выбросы. Бензин сгорает неполностью, выделяя сажу и токсичные вещества (угарный газ). Вы будете этим дышать.
➖Горелка с эжекцией:
Топливо предварительно испаряется/распыляется. Проходя по раскаленной трубке, жидкое топливо превращается в пар или мелкодисперсную взвесь. Это смешивается с воздухом и сгорает гораздо полнее.
Пламя стабилизировано. Оно горит на выходе из сопла, а не на поверхности открытой жидкости. Это стабильный, управляемый факел.
Выше температура и КПД. Из-за лучшего смесеобразования КПД такого сжигания (хоть и неидеальный) все равно выше, чем у открытой лужи. (т.е. и расход топлива меньше)
Эта конструкция безопаснее (относительно, конечно) и экологичнее, так как обеспечивает более полное сгорание.
▪️3. Автоматизация и стабильность
«Просто сжечь бензин»: Это одноразовый процесс. Сгорело — и все. Чтобы греть постоянно, нужно постоянно подливать топливо, что неудобно и опасно.
Горелка с эжекцией: Это саморегулирующаяся система. Пламя само подсасывает ровно столько топлива, сколько может испарить и сжечь. Вы залили бак — и она работает стабильно долгое время без вашего участия.
Тепла действительно будет примерно одинаково. Но эта горелка создана для другого:
1. Экономия: Она превращает бесплатные или очень дешевые отходы (отработка) в полезное тепло. Сравнивать нужно не с бензином, а со стоимостью дров, угля или электричества.
2. Эффективность и безопасность: Она сжигает это "грязное" топливо гораздо лучше и безопаснее, чем примитивное открытое горение.
3. Удобство: Это работоспособный, хоть и кустарный, нагревательный прибор, а не просто эксперимент. #задачи #physics #физика #опыты #термодинамика #эксперименты #горение
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1👍38❤12🔥7🤔3❤🔥1🤯1🤝1
  This media is not supported in your browser
    VIEW IN TELEGRAM
  Компания Tokamak Energy совершила небольшой, но очень важный прорыв в визуализации термоядерных процессов. Они впервые опубликовали цветное высокоскоростное видео работы своего сферического токамака ST40.
▪️ 1. Невероятная детализация: Камера снимала с частотой 16 000 кадров в секунду. Это позволяет разглядеть мельчайшие нестабильности и поведение плазменного шнура — то, что глазом или обычной камерой просто не увидеть.
▪️ 2. Цвет имеет значение: В отличие от черно-белых снимков, цвет помогает лучше анализировать распределение температуры и примесей в плазме.
▪️ 3. Данные, а не просто картинка: Эти кадры — не для красоты. Они критически важны для проверки и настройки компьютерных моделей, которые предсказывают поведение плазмы.
По сути, ученые получили «рентгеновское зрение» для своего реактора. Каждый такой кадр приближает нас к моменту, когда термоядерная энергия станет чистым и неиссякаемым источником энергии для человечества.
Watch one of our latest plasma pulses in our ST40 tokamak, filmed using a high-speed colour camera at an incredible 16,000 frames per second. Each pulse lasts around a fifth of a second. What you’re seeing is mostly visible light from the plasma’s edge, glowing pink. The core is simply too hot to emit visible light. In this footage, lithium is dropped into the plasma in the top right of the footage. As it interacts, it glows red when excited, then turns green as it becomes ionised, losing an electron. From there, it traces the magnetic field lines, revealing the plasma’s path around the tokamak. Lithium is the focus of our $52 million ST40 upgrade programme, in partnership with U.S. Department of Energy and the UK Department for Energy Security and Net Zero. This builds on pioneering work by Princeton Plasma Physics Laboratory and others that shows lithium can significantly improve plasma performance.
This video comes from ongoing research into X-point radiator (XPR) regimes, a promising operating mode for future fusion power plants that aims to cool the plasma before it reaches plasma-facing components (PFCs), helping to reduce wear without compromising performance. #физика #ядерная_физика #атомная_физика #электродинамика #магнетизм #плазма #physics #science #наука #квантовая_физика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  2🔥84❤34👍14⚡8😍5🤔2🤯2❤🔥1
  Media is too big
    VIEW IN TELEGRAM
  😱 Физикам опять поставили шах и мат? Итак, перед вами perpetual motion machine with magnets: два шприца, на поршни приклеены неодимовые магниты, поршни шприцов прикреплены через проволочный коленчатый вал к ротору двигателя. Дают первоначальный импульс и поршни в шприцах начинают раскручивать генератор, к которому подключена лампочка и она светится. В чем подвох? Нарушает ли эта конструкция закон сохранения энергии? 
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
🔔  Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года
⚡️  Вечный электромагнитный двигатель 
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1❤47👍21🔥10🤯4🗿3⚡2🤔2😭1🤝1
  This media is not supported in your browser
      VIEW IN TELEGRAM
    Media is too big
      VIEW IN TELEGRAM
    Media is too big
      VIEW IN TELEGRAM
    This media is not supported in your browser
      VIEW IN TELEGRAM
    This media is not supported in your browser
      VIEW IN TELEGRAM
    This media is not supported in your browser
      VIEW IN TELEGRAM
    Media is too big
      VIEW IN TELEGRAM
    Media is too big
      VIEW IN TELEGRAM
    Media is too big
      VIEW IN TELEGRAM
    Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».
В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
Физика процесса: Почему ветвится?
1. Пробой и стримеры: Под действием высокого напряжения электроны с острия катода начинают «вырываться» и ускоряться. Они сталкиваются с молекулами воздуха и дерева, выбивая новые электроны. Возникает лавина — стример. Это слабосветящийся канал ионизированного газа.
2. Случайность и предопределённость: Куда побежит следующий стример? Это зависит от локальной напряжённости электрического поля. В древесине всегда есть микронеоднородности: разная плотность, влажность, следы смолы. В этих местах поле усиливается, и пробой происходит именно там.
3. Эффект «опережающей струи» (The Streamer Leader Effect): Основной канал не движется вслепую. От его кончика постоянно исходят микро-стримеры-разведчики. Тот из них, кто находит путь с наименьшим сопротивлением, становится главным направлением для всей мощи разряда. Так и рождается фрактальная, древовидная структура.
⚡️ Цвет рассказывает историю. Ярко-белые или голубоватые участки в центре ветвей — это углерод, выгоревший при сверхвысокой температуре. Более светлые, почти жёлтые края — это часто частицы металла от электродов, испарившиеся и перенесённые разрядом. По цвету можно грубо определить температуру в разных зонах разряда.
⚡️ Это не только на дереве. Первооткрыватель, Георг Кристоф Лихтенберг, в XVIII веке получал их на поверхности смолы или стекла, посыпанной порошком (серы или сурика). Электроны «застревали» в диэлектрике, создавая скрытое изображение, которое проявлялось порошком. По сути, это была первая в истории электрофотография — прабабушка ксерокса.
⚡️ L-образные фигуры и природа электричества. Лихтенберг экспериментировал с разными типами электричества: «положительным» (от смоляных палочек) и «отрицательным» (от стеклянных). Он обнаружил, что они дают разные узоры! Отрицательные (от катода) — более ветвистые и кружевные, а положительные (от анода) — более плотные, пятнистые, иногда в форме розетки. Это связано с разной подвижностью электронов и положительных ионов.
⚡️ Фигуры в теле. При ударе молнии или контакте с высоковольтной линией такие же фигуры могут на несколько часов или дней проявиться на коже человека. Это результат подкожного кровоизлияния по пути пробоя. Явление называется «кераунография» (от греч. «кераунос» — молния). Это не ожог, а жутковатый «автограф» электрического разряда, идущего по сосудам. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  1❤21⚡21👍12🔥6❤🔥3😱3🤩1
  Media is too big
    VIEW IN TELEGRAM
  🧲⚡️Задачка по физике [электродинамика и магнетизм] для наших подписчиков: Почему поезд приходит в движение? Откуда возникает сила, толкающая вперед?
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
1🔥30❤13👍11⚡2❤🔥1👏1🆒1
  📚 Фейнмановские лекции по физике [1976-1978] 💫
 
💾 Скачать книги
Это попытка одного из величайших умов XX века не просто изложить физику, но и передать особый, «фейнмановский» способ мышления о природе.
▪️ Не для абсолютных новичков. Несмотря на все старания Фейнмана сделать материал доступным, это очень плотный и сложный курс. Человеку без какой-либо базовой подготовки по математике и физике (на уровне старших классов физмат-школы или 1-2 курса вуза) будет крайне тяжело.
▪️ Не лучший выбор для «натаскивания» на экзамены. Если ваша цель — быстро решить сотню типовых задач для зачета, «Фейнмановские лекции» — не ваш инструмент. Они дают глубокое понимание, но не отрабатывают навык решения стандартных упражнений. Для этого лучше подходят классические задачники (вроде Иродова или Савельева).
▪️ Некоторые темы изложены нестандартно. Подход Фейнмана часто уникален и может расходиться с каноническим изложением в других учебниках. С одной стороны, это гениально, с другой — может вызвать путаницу у студента, который готовится к экзамену по конкретной программе.
▪️ Физика своего времени. Лекции были прочитаны в 1960-х годах. С тех пор физика ушла далеко вперед (например, в области физики элементарных частиц, космологии). Хотя фундамент остался неизменным, современному читателю важно это учитывать.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Это попытка одного из величайших умов XX века не просто изложить физику, но и передать особый, «фейнмановский» способ мышления о природе.
▪️ Не для абсолютных новичков. Несмотря на все старания Фейнмана сделать материал доступным, это очень плотный и сложный курс. Человеку без какой-либо базовой подготовки по математике и физике (на уровне старших классов физмат-школы или 1-2 курса вуза) будет крайне тяжело.
▪️ Не лучший выбор для «натаскивания» на экзамены. Если ваша цель — быстро решить сотню типовых задач для зачета, «Фейнмановские лекции» — не ваш инструмент. Они дают глубокое понимание, но не отрабатывают навык решения стандартных упражнений. Для этого лучше подходят классические задачники (вроде Иродова или Савельева).
▪️ Некоторые темы изложены нестандартно. Подход Фейнмана часто уникален и может расходиться с каноническим изложением в других учебниках. С одной стороны, это гениально, с другой — может вызвать путаницу у студента, который готовится к экзамену по конкретной программе.
▪️ Физика своего времени. Лекции были прочитаны в 1960-х годах. С тех пор физика ушла далеко вперед (например, в области физики элементарных частиц, космологии). Хотя фундамент остался неизменным, современному читателю важно это учитывать.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
 +79616572047 (СБП)  📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
1👍34❤14🔥7❤🔥3⚡3😍1
  Фейнмановские лекции по физике.zip
    33.9 MB
  📚 Фейнмановские лекции по физике [1976-1978]
«Фейнмановские лекции по физике» — это не просто книга, которую нужно «пройти». Это книга, с которой нужно разговаривать, спорить, перечитывать и осмыслять. Она не даст вам легких ответов, но она научит вас задавать правильные вопросы и искать на них ответы так, как это делал великий Фейнман. Это инвестиция в ваше мышление. Безусловная классика, не имеющая аналогов по глубине и стилю изложения. Must-read для каждого, кто серьезно интересуется физикой.
▪️Глубина понимания, а не просто знание. Ричард Фейнман был известен своей способностью видеть сердце проблемы, отбрасывая всё лишнее. Он не дает готовых формул и алгоритмов решения задач. Вместо этого он показывает, как физики мыслят, как они приходят к тем или иным выводам, строят модели и проверяют их. Вы учитесь не «чему», а «как».
▪️Уникальный педагогический подход. Фейнман мастерски начинает с простых, интуитивно понятных вещей (часто с бытовых примеров), а затем шаг за шагом подводит к сложнейшим концепциям. Его объяснения полны аналогий, мысленных экспериментов и ярких метафор, которые врезаются в память. Знаменитая лекция о законе сохранения энергии, начинающаяся с детской игрушки, — тому подтверждение.
▪️Фундаментальность и целостность картины мира. Лекции не являются сборником разрозненных фактов. Фейнман выстраивает единую, логичную структуру физики, от Ньютоновской механики до квантовой электродинамики. Он постоянно показывает связи между разными разделами, демонстрируя, что физика — это не набор отдельных курсов, а единая наука о фундаментальных законах.
▪️Честность и отсутствие догм. Фейнман не скрывает сложностей и «неудобных» мест в физике. Он прямо говорит о том, что наука еще не все знает, где есть пробелы в понимании и какие вопросы остаются открытыми. Эта интеллектуальная честность заразительна и мотивирует на собственные размышления.
▪️Блестящий стиль изложения. Текст сохранил живую, разговорную интонацию Фейнмана. Читая, будто слышишь его голос — энергичный, полный юмора и любви к своему предмету. Это делает даже самый сложный материал увлекательным.
Для кого эти лекции:
— Для студентов 1-3 курсов физико-математических и инженерных специальностей — как основное или дополнительное чтение для формирования глубокого понимания.
— Для преподавателей физики — как неиссякаемый источник вдохновения, идей и блестящих объяснений.
— Для любознательных людей с хорошей технической подготовкой (инженеров, программистов), которые хотят понять, «как устроен этот мир» на фундаментальном уровне.
— Для всех, кто ценит красоту научной мысли и хочет насладиться интеллектуальным стилем одного из гениев современности.
💡 Physics.Math.Code // @physics_lib
«Фейнмановские лекции по физике» — это не просто книга, которую нужно «пройти». Это книга, с которой нужно разговаривать, спорить, перечитывать и осмыслять. Она не даст вам легких ответов, но она научит вас задавать правильные вопросы и искать на них ответы так, как это делал великий Фейнман. Это инвестиция в ваше мышление. Безусловная классика, не имеющая аналогов по глубине и стилю изложения. Must-read для каждого, кто серьезно интересуется физикой.
▪️Глубина понимания, а не просто знание. Ричард Фейнман был известен своей способностью видеть сердце проблемы, отбрасывая всё лишнее. Он не дает готовых формул и алгоритмов решения задач. Вместо этого он показывает, как физики мыслят, как они приходят к тем или иным выводам, строят модели и проверяют их. Вы учитесь не «чему», а «как».
▪️Уникальный педагогический подход. Фейнман мастерски начинает с простых, интуитивно понятных вещей (часто с бытовых примеров), а затем шаг за шагом подводит к сложнейшим концепциям. Его объяснения полны аналогий, мысленных экспериментов и ярких метафор, которые врезаются в память. Знаменитая лекция о законе сохранения энергии, начинающаяся с детской игрушки, — тому подтверждение.
▪️Фундаментальность и целостность картины мира. Лекции не являются сборником разрозненных фактов. Фейнман выстраивает единую, логичную структуру физики, от Ньютоновской механики до квантовой электродинамики. Он постоянно показывает связи между разными разделами, демонстрируя, что физика — это не набор отдельных курсов, а единая наука о фундаментальных законах.
▪️Честность и отсутствие догм. Фейнман не скрывает сложностей и «неудобных» мест в физике. Он прямо говорит о том, что наука еще не все знает, где есть пробелы в понимании и какие вопросы остаются открытыми. Эта интеллектуальная честность заразительна и мотивирует на собственные размышления.
▪️Блестящий стиль изложения. Текст сохранил живую, разговорную интонацию Фейнмана. Читая, будто слышишь его голос — энергичный, полный юмора и любви к своему предмету. Это делает даже самый сложный материал увлекательным.
Для кого эти лекции:
— Для студентов 1-3 курсов физико-математических и инженерных специальностей — как основное или дополнительное чтение для формирования глубокого понимания.
— Для преподавателей физики — как неиссякаемый источник вдохновения, идей и блестящих объяснений.
— Для любознательных людей с хорошей технической подготовкой (инженеров, программистов), которые хотят понять, «как устроен этот мир» на фундаментальном уровне.
— Для всех, кто ценит красоту научной мысли и хочет насладиться интеллектуальным стилем одного из гениев современности.
💡 Physics.Math.Code // @physics_lib
1❤29👍18🔥8🤯1🤩1💯1
  🎲 Бросайте кубики, пока не надоест! Интересная задача по математике 🎲 
Представьте, что у вас есть два обычных шестигранных игральных кубика (кости). Вы бросаете их одновременно и записываете сумму выпавших очков. Вы можете остановиться в любой момент. Ваша финальная сумма — это результат последнего броска перед остановкой. Какова оптимальная стратегия остановки, чтобы максимизировать ожидаемое значение финальной суммы, и чему равно это математическое ожидание?
❓ Справятся ли с этой задачи наши физики, математики и айтишники? Ваши ответы, решения и идеи пишите здесь в комментариях. ✍🏻
#математика #теория_вероятностей #математическая_статистика #статистика #math #mathematics #задачи
💡 Physics.Math.Code // @physics_lib
Представьте, что у вас есть два обычных шестигранных игральных кубика (кости). Вы бросаете их одновременно и записываете сумму выпавших очков. Вы можете остановиться в любой момент. Ваша финальная сумма — это результат последнего броска перед остановкой. Какова оптимальная стратегия остановки, чтобы максимизировать ожидаемое значение финальной суммы, и чему равно это математическое ожидание?
#математика #теория_вероятностей #математическая_статистика #статистика #math #mathematics #задачи
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  ✍19🤯9❤8🔥5🤔3👍2
  This media is not supported in your browser
    VIEW IN TELEGRAM
  До середины 19 века ночной город погружался во тьму, которую лишь кое-как рассеивали тусклые газовые рожки и масляные фонари. Но все изменилось с появлением настоящего «электрического солнца» — фонаря с угольной дугой. Это была первая по-настоящему эффективная форма электрического освещения, которая ослепила современников и навсегда изменила представление о ночном городе. В основе фонаря лежало явление вольтовой дуги — особого вида электрического разряда в газе.
▪️ Суть явления: Если два электрода (в нашем случае — угольных стержня) сначала коснуться, а затем немного раздвинуть, между ними продолжает течь электрический ток. Но теперь он проходит не по проводнику, а через ионизированный воздух — плазму.
▪️ Почему она светится: Электрическое поле в зазоре между электродами разгоняет свободные электроны. Эти "разогнанные" электроны сталкиваются с атомами газа (азота, кислорода) и "выбивают" из них другие электроны. Этот процесс называется ионизацией. При столкновениях часть энергии переходит в свет и колоссальное тепло. Температура в центре дуги может достигать 4000 °C — это выше температуры плавления большинства известных материалов.
🔦 Процесс горения дуги: как это работало в фонаре?
1. Зажигание: Фонарщик (или позднее автоматический механизм) сближал два угольных стержня до момента их соприкосновения. По цепи начинал течь ток.
2. Поджиг и разрыв: Концы стержней сильно разогревались из-за высокого сопротивления в точке контакта. Затем механизм немного (на несколько миллиметров) раздвигал стержни.
3. Рождение "солнца": Между раскаленными концами углей возникала та самая вольтова дуга. Воздух ионизировался, и мощный поток света и тепла устремлялся наружу. Свет был настолько ярок, что смотреть на него без защиты было больно для глаз.
4. Стабилизация и выгорание: Угольные стержни постепенно сгорали в этом адском пламени. Чтобы дуга не гасла, сложный механизм (регулятор) постоянно поддерживал идеальное расстояние между ними, медленно сдвигая стержни по мере их испарения.
Почему именно угольные стержни? Почему не медные или железные прутья? Ответ кроется в уникальных свойствах угля (графита):
1. Высокая температура плавления (возгонки): Уголь не плавится, как металл, а сразу переходит из твердого состояния в газообразное (сублимируется) при температуре около 3900 °C. Это одна из самых высоких температур среди известных тогда материалов. Металлический электрод просто расплавился бы и испарился за секунды, в то время как уголь мог относительно стабильно работать в плазме дуги.
2. Эмиссия электронов: Раскаленный уголь является отличным эмиттером электронов. При высоких температурах электроны в его атомах получают достаточно энергии, чтобы "вырваться" с поверхности и устремиться к противоположному электроду. Этот "электронный паром" — основа для поддержания стабильной дуги.
3. Хорошая электропроводность: Чистый уголь (графит) проводит электрический ток, что является обязательным условием для работы.
4. Относительная дешевизна: Угольные стержни было проще и дешевле производить в больших количествах, чем, например, стержни из тугоплавких металлов вроде вольфрама (которые стали использовать позже).
Несмотря на свою яркость, угольные дуговые фонари были неидеальны. Они требовали постоянного обслуживания (замены стержней каждые несколько часов), издавали шипение и характерный запах озона, а главное — были слишком мощными для небольших помещений. Их время пришлось на конец 19 - начало 20 века, когда они освещали главные площади, проспекты и фабрики. Но именно они проложили путь для своей более практичной и долговечной преемницы — лампы накаливания Лодыгина и Эдисона. #физика #опыты #эксперименты #наука #science #physics #электродинамика #видеоуроки #изобретения #радиофизика
⚡️ Фигуры Лихтенберга
🧲 Почему поезд приходит в движение?
📚 Фейнмановские лекции по физике [1976-1978] 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1🔥35❤12⚡11👍11
  Media is too big
    VIEW IN TELEGRAM
  Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R , R — радиус неподвижной окружности (опорная поверхность), r — радиус катящейся окружности. h — расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
 R → ∞ и h → R , то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  🔥12❤7👍6🤝4❤🔥1⚡1
  