Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nn_for_science/-2554-2555-): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2555
NN_FOR_SCIENCE Telegram 2555
NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!
🔥22👍75😱4😐3



tgoop.com/nn_for_science/2555
Create:
Last Update:

NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!

BY AI для Всех





Share with your friend now:
tgoop.com/nn_for_science/2555

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces.
from us


Telegram AI для Всех
FROM American