Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nn_for_science/-2554-2555-): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
AI для Всех@nn_for_science P.2554
NN_FOR_SCIENCE Telegram 2554
NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!
🔥22👍75😱4😐3



tgoop.com/nn_for_science/2554
Create:
Last Update:

NanoBanana for Geoscience

Вчера гулял по городу и пришла в голову идея: можно ли извлечь что-нибудь научно полезное из image-to-image моделей типа NanoBanana. Оказалось что очень даже.

Дал ей zero-shot промпт построить heatmap of grass damage (насколько сильно вытоптана трава в парке) и модель справилась на отлично!

Прикладываю сам промпт (навайбенный с GPT-5):

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”


Кидайте свои идеи в комментарии!

BY AI для Всех





Share with your friend now:
tgoop.com/nn_for_science/2554

View MORE
Open in Telegram


Telegram News

Date: |

A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. Image: Telegram. Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020.
from us


Telegram AI для Всех
FROM American