Telegram Web
Media is too big
VIEW IN TELEGRAM
GigaChat Vision Team — ваша будущая команда! 😉

Если вы зарегистрируетесь на One Day Offer для NLP- и CV-инженеров и пройдёте все этапы отбора, то уже совсем скоро будете:

✔️ Обучать Vision, 3D/CAD и омни-модальные модели на тысячах A100/H100.
✔️ Создавать live-ассистента на edge-устройствах, а также базовые модели VLA для промышленных проектов: автоматизированных фабрик, автопилотов и роботов.
✔️ Работать с документами: Document Intelligence и разработка VLM OCR.
✔️ Развивать мультимодальную инфраструктуру: от инференса генеративных моделей до создания и авторазметки синтетических данных

Дублируем ссылку на регистрацию — до встречи 4 октября!
🧩 Разговор психотерапевта с ChatGPT показал любопытный эффект: модель умеет создавать ощущение близости, подстраиваться под стиль собеседника и поддерживать беседу, хотя у неё нет никакой «внутренней жизни».

💡 Почему так происходит:
- RLHF — люди обучили модель быть вежливой, тёплой и «безопасной» в ответах.
- Поэтому она автоматически ведёт плавный и приятный диалог.
- Зеркалирование — модель копирует слова и ритм речи пользователя, что создаёт ощущение понимания. Но это часто превращается в поддакивание: ответы больше угождают, чем отражают правду.

📊 Исследования показывают: чат-боты выглядят даже «эмпатичнее» людей. В одном эксперименте пользователи предпочли ответы ИИ в 79% случаев, посчитав их более заботливыми, чем ответы врачей.

Подробнее: newyorker.com/culture/the-weekend-essay/putting-chatgpt-on-the-couch

#AI #ChatGPT #LLM
👍31
Как выбрать IT-инфраструктуру для ML и как внедрить MLOps?
Реальные бизнес-кейсы

Присоединяйтесь к Selectel Tech Day 8 октября, чтобы узнать о лучших практиках масштабирования ML-проектов и актуальных трендах инфраструктурного ML.

На отдельном ML-треке обсудят:

🔺Как превратить экспериментальные модели в стабильные продакшн-системы.
🔺Как оценить эффективность внедрения ML-решений.
🔺Какая инфраструктура закроет все потребности ML-проектов.

Вас ждет насыщенная программа: содержательные доклады, экспертная дискуссия и воркшоп. Участие бесплатное, нужно только зарегистрироваться →

Реклама. АО "Селектел". erid:2W5zFGQUEAU
👍1
🚀 Как обучать LLM с Unsloth + Docker

Unsloth — это open-source фреймворк, который упрощает и ускоряет fine-tuning и RL для больших языковых моделей.

🧰 Основные шаги

1. Использование Docker-образа Unsloth
Вместо ручной установки всех зависимостей можно запустить подготовленный контейнер unsloth/unsloth, где уже настроены все инструменты.

2. Запуск внутри контейнера
Внутри контейнера вы загружаете модель (например, LLaMA, Phi, Mistral и др.) и применяете Unsloth для обучения или дообучения (fine-tuning).

3. Конфигурация fine-tuning
Используются подходы вроде LoRA / QLoRA, gradient checkpointing, quantization и др., которые минимизируют потребление памяти и ускоряют обучение.

4. Запуск обучения и оптимизация
После настройки данных, модели и конфигурации запускается процесс обучения, при этом Unsloth оптимизирует внутренние операции, используя свои ядра и ускорение.

Почему стоит попробовать

- Упрощённый workflow: Docker избавляет от проблем с зависимостями
- Эффективность: меньше затрат по памяти и времени благодаря оптимизациям
- Совместимость: работает с популярными моделями, quantization, адаптирует существующие пайплайны

#LLM #Docker #AI #Unsloth

https://docs.unsloth.ai/new/how-to-train-llms-with-unsloth-and-docker
🔥52
👩‍💻 FastMCP — Быстрый, Python-способ создания MCP-серверов!

🌟 Серверы Model Context Protocol (MCP) — это новый стандартизированный способ предоставления контекста и инструментов вашим LLM, а FastMCP делает создание серверов MCP простым и интуитивно понятным. Создавайте инструменты, предоставляйте ресурсы и определяйте подсказки с помощью чистого кода Python!

🔐 Лицензия: MIT

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥3
Forwarded from Machinelearning
✔️ Ming-UniAudio - универсальный инструмент для работы с речью.

Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark

✔️ Свежий бесплатный курс по нейросетям от Эндрю Ына и Стэнфорда

Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.

В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.

Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание

✔️ AI-инфраструктура тянет экономику США: 40% роста ВВП и триллионы инвестиций впереди

Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.

UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.

По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.

Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X

✔️ Alpha School: в Техасе открылась школа, где учителей заменил ИИ

Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.

Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.

Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews

✔️ ИИ помог Теренсу Тао найти контрпример в математике

Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.

У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.

Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.

Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
Профессиональный гайд по работе с ChatGPT (2025)

Как использовать ChatGPT не просто как «умного собеседника», а как полноценного помощника для программирования, маркетинга, аналитики и обучения?

Мы разберём, какие версии модели существуют, какие плагины открывают новые возможности, как строить промпты так, чтобы получать точные и полезные ответы, и как интегрировать ChatGPT в рабочие процессы.

Если у вас нет доступа к chatgpt можете использовать бесплатного бота в телеге, чтобы потестить все техники из статьи или воспользоваться обычной версией с помощью всем известного обхода блокировки.

Не будем тянуть время, Поехали!

📌 Гайд
3👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Amazon FAR показывает, как роботы учатся двигаться как люди

Новая команда Amazon FAR (созданная после покупки Covariant**) представила систему, которая умеет **переносить длинные последовательности человеческих движений (>30 секунд) на роботов с разной анатомией и в разных условиях — например, при взаимодействии с коробками, столами и объектами разных размеров.

Технология позволяет делать масштабное симуляционное обучение и zero-shot-трансфер — без необходимости собирать сложные телеметрические данные от операторов-людей, что особенно важно для гуманоидных роботов.

📦 Датасет доступен на Hugging Face (ищите *OmniRetarget*), а полный код-фреймворк команда обещает выложить скоро.
На странице проекта уже есть трёхмерные интерактивные демо на *three.js* — выглядят впечатляюще.

omniretarget.github.io
4👍2🔥1
🔥 AI Youtube Shorts Generator — это инструмент Python, разработанный для создания увлекательных коротких Shorts видео на YouTube из обычных длинных видео!

🌟 Используя возможности GPT-4 и Whisper, он извлекает самые интересные моменты, определяет говорящих и обрезает контент по вертикали для коротких видео.

🔐 Лицензия: MIT

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Forwarded from Machinelearning
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76
Media is too big
VIEW IN TELEGRAM
🤖 Figure 03 - первый гуманоидный робот для массового рынка

Figure AI представила Figure 03 - третье поколение своего гуманоида и первый робот, созданный специально для массового производства.

Робот обучается напрямую через взаимодействие с людьми и способен выполнять бытовые и рабочие задачи, от дома до складов и отелей. Его ИИ-система Helix объединяет зрение, язык и действия, позволяя действовать естественно в человеческой среде.

Корпус теперь выполнен из моющихся мягких материалов, без открытых механизмов, а вес снижен на 9% по сравнению с предыдущей моделью. Производство переведено на литьё и формование вместо CNC, что значительно ускоряет выпуск. Компания рассчитывает выпускать 12 000 роботов в год и достичь 100 000 за четыре года.

У Figure 03 обновлён сенсорный пакет: шире поле зрения камер, встроенные камеры в ладонях, чувствительные сенсоры давления и новая аудиосистема, лучше распознающая звуки.

Робот можно «переодевать» — для работы в разных условиях предусмотрены разные униформы. Зарядка — беспроводная, с передачей данных.

На видео Figure 03 движется плавно и уверенно, взаимодействуя с людьми и бытовыми устройствами. Но как поведёт себя робот вне демонстрационных роликов — покажет время. Цену компания пока не раскрыла.
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥2🥰1
🧩 Примеры приложений для Apps SDK от OpenAI

Этот репозиторий демонстрирует примеры UI-компонентов и MCP-серверов для создания приложений на базе ChatGPT. Он служит отправной точкой для разработки собственных приложений, используя Model Context Protocol для интеграции инструментов и интерфейсов.

🚀 Основные моменты:
- Примеры компонентов для Apps SDK.
- Демонстрация работы MCP-серверов.
- Поддержка различных языков программирования (Node.js, Python).
- Возможность создания и кастомизации собственных виджетов.
- Легкая интеграция с ChatGPT.

📌 GitHub: https://github.com/openai/openai-apps-sdk-examples
2👍2🔥1
Forwarded from Machinelearning
🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля

В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:

> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)

Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.

💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.

Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.

Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).

А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K

🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.

🟠GitHub:https://github.com/karpathy/nanochat
🟠Технические детали: https://github.com/karpathy/nanochat/discussions/1

@ai_machinelearning_big_data


#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥84👍1
🚀 Microsoft представила MAI-Image-1 - новую модель генерации изображений, которая уже вошла в топ-10 на LMArena

MAI-Image-1 создаётся с упором на реализм, разнообразие и художественную точность, а не шаблонные стили.
Она особенно сильна в фотореалистичных сценах - свет, тени, отражения и текстуры выглядят максимально естественно.

Microsoft отмечает, что обучение велось на тщательно отобранных данных с участием художников и дизайнеров, чтобы улучшить восприятие и применимость модели в реальных проектах.

Главное преимущество — скорость и качество: можно мгновенно визуализировать идею, а затем доработать её в привычных инструментах.

💡 В ближайшее время модель появится в Copilot и Bing Image Creator, но уже сейчас её можно протестировать и оценить в LMArena.

🔗 Подробнее здесь: https://microsoft.ai/news/introducing-mai-image-1-debuting-in-the-top-10-on-lmarena/
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍3🔥2
2025/10/15 09:09:03
Back to Top
HTML Embed Code: