Telegram Web
👩‍💻 FastMCP — Быстрый, Python-способ создания MCP-серверов!

🌟 Серверы Model Context Protocol (MCP) — это новый стандартизированный способ предоставления контекста и инструментов вашим LLM, а FastMCP делает создание серверов MCP простым и интуитивно понятным. Создавайте инструменты, предоставляйте ресурсы и определяйте подсказки с помощью чистого кода Python!

🔐 Лицензия: MIT

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥3
Forwarded from Machinelearning
✔️ Ming-UniAudio - универсальный инструмент для работы с речью.

Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark

✔️ Свежий бесплатный курс по нейросетям от Эндрю Ына и Стэнфорда

Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.

В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.

Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание

✔️ AI-инфраструктура тянет экономику США: 40% роста ВВП и триллионы инвестиций впереди

Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.

UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.

По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.

Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X

✔️ Alpha School: в Техасе открылась школа, где учителей заменил ИИ

Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.

Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.

Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews

✔️ ИИ помог Теренсу Тао найти контрпример в математике

Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.

У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.

Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.

Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
Профессиональный гайд по работе с ChatGPT (2025)

Как использовать ChatGPT не просто как «умного собеседника», а как полноценного помощника для программирования, маркетинга, аналитики и обучения?

Мы разберём, какие версии модели существуют, какие плагины открывают новые возможности, как строить промпты так, чтобы получать точные и полезные ответы, и как интегрировать ChatGPT в рабочие процессы.

Если у вас нет доступа к chatgpt можете использовать бесплатного бота в телеге, чтобы потестить все техники из статьи или воспользоваться обычной версией с помощью всем известного обхода блокировки.

Не будем тянуть время, Поехали!

📌 Гайд
3👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Amazon FAR показывает, как роботы учатся двигаться как люди

Новая команда Amazon FAR (созданная после покупки Covariant**) представила систему, которая умеет **переносить длинные последовательности человеческих движений (>30 секунд) на роботов с разной анатомией и в разных условиях — например, при взаимодействии с коробками, столами и объектами разных размеров.

Технология позволяет делать масштабное симуляционное обучение и zero-shot-трансфер — без необходимости собирать сложные телеметрические данные от операторов-людей, что особенно важно для гуманоидных роботов.

📦 Датасет доступен на Hugging Face (ищите *OmniRetarget*), а полный код-фреймворк команда обещает выложить скоро.
На странице проекта уже есть трёхмерные интерактивные демо на *three.js* — выглядят впечатляюще.

omniretarget.github.io
3👍1🔥1
🔥 AI Youtube Shorts Generator — это инструмент Python, разработанный для создания увлекательных коротких Shorts видео на YouTube из обычных длинных видео!

🌟 Используя возможности GPT-4 и Whisper, он извлекает самые интересные моменты, определяет говорящих и обрезает контент по вертикали для коротких видео.

🔐 Лицензия: MIT

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Forwarded from Machinelearning
🧩 Новая архитектура нейросетей от Samsung: Tiny Recursive Model (TRM) - обошла DeepSeek-R1, Gemini 2.5 Pro и o3-mini в задачах рассуждения ARC-AGI 1 и ARC-AGI 2.

✔️ Размер модели - всего 7 миллионов параметров и около 1000 обучающих примеров.

Это меньше в 10 000 раз, чем у современных LLM, но результат лучше.

Как работает TRM:

1️⃣ Черновой ответ: модель сразу формирует быстрый набросок решения, а не пишет его по словам.
2️⃣ Скрачпад: создаёт внутреннее пространство для логики и промежуточных рассуждений.
3️⃣ Самокритика: многократно (6 раз) проверяет свои рассуждения, уточняя и исправляя ошибки.
4️⃣ Переписывание: на основе улучшённой логики создаёт новую, более точную версию ответа.
5️⃣ Цикличность: повторяет процесс до 16 раз, пока не достигнет уверенного, логически цельного решения.

💡 Чем интересна модель:

- Меньше затрат на вычисления, а результат выше; высокая эффективность при низких издержках.
- Доказательство того, что собственная логика и архитектура могут быть сильнее простого размера модели. Можно коротко описать ее: «думай, прежде чем действовать».
- Мощные рассуждающие системы становятся доступными даже без огромных кластеров, модель можно запускать на ограниченных ресурсах.

Это не просто «компактаная LLM», это другой способ мышления: модель, которая действительно *думает, прежде чем говорить*.

🟠Статья: https://arxiv.org/abs/2510.04871v1
🟠Github: https://github.com/SamsungSAILMontreal/TinyRecursiveModels

@ai_machinelearning_big_data

#TinyRecursiveModels #TRM #DeepLearning #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76
Media is too big
VIEW IN TELEGRAM
🤖 Figure 03 - первый гуманоидный робот для массового рынка

Figure AI представила Figure 03 - третье поколение своего гуманоида и первый робот, созданный специально для массового производства.

Робот обучается напрямую через взаимодействие с людьми и способен выполнять бытовые и рабочие задачи, от дома до складов и отелей. Его ИИ-система Helix объединяет зрение, язык и действия, позволяя действовать естественно в человеческой среде.

Корпус теперь выполнен из моющихся мягких материалов, без открытых механизмов, а вес снижен на 9% по сравнению с предыдущей моделью. Производство переведено на литьё и формование вместо CNC, что значительно ускоряет выпуск. Компания рассчитывает выпускать 12 000 роботов в год и достичь 100 000 за четыре года.

У Figure 03 обновлён сенсорный пакет: шире поле зрения камер, встроенные камеры в ладонях, чувствительные сенсоры давления и новая аудиосистема, лучше распознающая звуки.

Робот можно «переодевать» — для работы в разных условиях предусмотрены разные униформы. Зарядка — беспроводная, с передачей данных.

На видео Figure 03 движется плавно и уверенно, взаимодействуя с людьми и бытовыми устройствами. Но как поведёт себя робот вне демонстрационных роликов — покажет время. Цену компания пока не раскрыла.
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥2🥰1
2025/10/13 02:14:12
Back to Top
HTML Embed Code: