MACHINELEARNING_INTERVIEW Telegram 1949
🔧 Дифференцируемое программирование для оптимизации рабочих процессов LLM — эффективно

В работе рассматривается, как встроить обучаемые маршрутизаторы (router'ы) прямо в цепочки вызовов LLM-агента. Вместо ручной маршрутизации по инструментам — пусть агент сам решает, какой инструмент и когда использовать — благодаря дифференцируемому программированию.

Особенности:
Используются локальные learnable-router’ы, реализованные через PyTorch и DSPy
Работают как дифференцируемые майнеры — выбирают наиболее подходящий инструмент
Экономят токены и снижают затраты благодаря оптимальной маршрутизации
Структурируют agent’ские workflow так, чтобы не перегружать LLM лишними данными

Почему это важно:
Меньше токенов → короче запросы → ниже стоимость и быстрее ответы
Меньше статики — маршруты адаптивные и обучаемые
Больше контроля — можно быстро донастраивать выбор инструментов

Кому это нужно:
– Разработчикам LLM-агентов, которые хотят сделать авто-подбор инструментов
– Интеграторам, стремящимся оптимизировать цепочки вызовов для экономии ресурсов
– Исследователям DSP и PyTorch, работающим над LLM-архитектурами

💡 Итог:
Добавление дифференцируемых роутеров — простой шаг, который даёт эффективную автоматическую маршрутизацию инструментов. Это ускоряет, оптимизирует и делает work‑flow умнее.

📌 Читать полностью
👍86🔥3



tgoop.com/machinelearning_interview/1949
Create:
Last Update:

🔧 Дифференцируемое программирование для оптимизации рабочих процессов LLM — эффективно

В работе рассматривается, как встроить обучаемые маршрутизаторы (router'ы) прямо в цепочки вызовов LLM-агента. Вместо ручной маршрутизации по инструментам — пусть агент сам решает, какой инструмент и когда использовать — благодаря дифференцируемому программированию.

Особенности:
Используются локальные learnable-router’ы, реализованные через PyTorch и DSPy
Работают как дифференцируемые майнеры — выбирают наиболее подходящий инструмент
Экономят токены и снижают затраты благодаря оптимальной маршрутизации
Структурируют agent’ские workflow так, чтобы не перегружать LLM лишними данными

Почему это важно:
Меньше токенов → короче запросы → ниже стоимость и быстрее ответы
Меньше статики — маршруты адаптивные и обучаемые
Больше контроля — можно быстро донастраивать выбор инструментов

Кому это нужно:
– Разработчикам LLM-агентов, которые хотят сделать авто-подбор инструментов
– Интеграторам, стремящимся оптимизировать цепочки вызовов для экономии ресурсов
– Исследователям DSP и PyTorch, работающим над LLM-архитектурами

💡 Итог:
Добавление дифференцируемых роутеров — простой шаг, который даёт эффективную автоматическую маршрутизацию инструментов. Это ускоряет, оптимизирует и делает work‑flow умнее.

📌 Читать полностью

BY Machine learning Interview




Share with your friend now:
tgoop.com/machinelearning_interview/1949

View MORE
Open in Telegram


Telegram News

Date: |

Select “New Channel” 1What is Telegram Channels? Users are more open to new information on workdays rather than weekends. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): To upload a logo, click the Menu icon and select “Manage Channel.” In a new window, hit the Camera icon.
from us


Telegram Machine learning Interview
FROM American