Telegram Web
👇 Зачем в машинном обучении иногда специально нарушают симметрию

Во многих моделях, особенно нейронных сетях, изначальная симметрия (одинаковая инициализация весов, одинаковая структура путей) может привести к тому, что все нейроны начинают учиться одинаково — и, по сути, дублируют друг друга. Это мешает сети извлекать разнообразные признаки и тормозит обучение.

Чтобы этого избежать, симметрию намеренно ломают — например, инициализируя веса случайными значениями, даже если структура одинаковая. Этот маленький хаос позволяет разным частям модели начать «думать» по-разному с самого старта и постепенно развивать разные специализации.

Симметрия красива в математике, но в обучении может быть смертельна: без разнообразия начальных состояний — нет разнообразия решений.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 «Поиграйся с LLM, почитай про агентов — и сам поймёшь, как это работает»

Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.

Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.

AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.

➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод

Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля

P.S: не упусти свой шанс, промокод: LASTCALL на 10.000₽
😤 Пока вы думаете — остальные уже учатся строить системы, которые работают за них

24 часа до старта курса по AI-агентам. Самое время задуматься о прокачке скиллов, потому что места ограничены!

Если вы до сих пор думаете, что LLM — это просто «вызов через API», то вы рискуете очень скоро оказаться за бортом индустрии.

Модели больше не в центре. Решают те, кто умеет собирать интеллектуальные системы, а не просто «дообучать модельку».

➡️ Что вы потеряете, если не впишетесь:
— навык, который уже востребован на рынке
— понимание, как из GPT сделать полноценного помощника, агента или продукт
— шанс догнать тех, кто уже перешёл на следующий уровень

📌 Курс стартует уже завтра
— 5 вебинаров, живая практика, код, разборы, продовые кейсы
— без «посмотрите статью», только то, что реально нужно

Спикеры: Никита Зелинский (МТС), Диана Павликова, Макс Пташник, Дима Фомин — те, кто реально собирает агентные системы, а не просто про них пишет.

Старт уже завтра — забронируйте место на курсе сейчас
😎 Почему иногда используют «обманчиво плохую» loss-функцию на этапе обучения

Иногда для обучения выбирают лосс-функцию, которая не совпадает с целевой метрикой — и даже, на первый взгляд, плохо её отражает.

Это делается не по ошибке, а потому что:
Целевая метрика негладкая или недифференцируемая, например, F1-score, Precision\@K, Accuracy. Их нельзя напрямую оптимизировать с помощью градиентного спуска.
Взамен используют surrogate loss — «замещающую» функцию, которую можно эффективно минимизировать.
Например:
✔️ log-loss для классификации,
✔️ hinge loss для SVM,
✔️ MSE вместо MAE в регрессии.

Иногда surrogate loss вообще не похож на целевую метрику — и всё равно работает. Это парадокс: модель учится не по той метрике, которую мы хотим улучшить, но всё равно её улучшает.

Такой выбор — компромисс между математической удобством и практической целью. И это одна из причин, почему хорошие метрики ≠ хорошие loss-функции, и наоборот.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/07/04 20:53:57
Back to Top
HTML Embed Code: