Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/def_model_train/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
я обучала одну модель@def_model_train P.1063
DEF_MODEL_TRAIN Telegram 1063
Reasoning Models Can Be Effective Without Thinking
https://arxiv.org/abs/2504.09858


Уже писала парой постов выше, что меня очень интересует вопрос, насколько в ризонинге можно сократить использование большого числа ненужных токенов, но тут авторы сделали еще один шаг вперед и просто убрали ризонинг совсем. То есть сразу после промпта вставляли

<|beginning of thinking|>
Okay, I think I have finished thinking.
<|end of thinking|>


чтобы модель генерировала сразу финальный ответ

Результаты получились такие:
- Даже с отрубленным ризонингом, DeepSeek-R1-Distill-Qwen-32B на всех бенчах строго лучше Qwen-32B-Instruct

- Из коробки NoThinking сетап генерирует в 3.3–3.7 раз меньше токенов, чем та же модель с Thinking (то есть, когда модели позволяют целиком сгенерить ризонинг трейс). При этом, бенчи на доказательство теорем NoThinking подход решает даже лучше

- На остальных бенчах также ожидаемо pass@1 у NoThinking проседает, и чем больше k мы ставим, тем ближе приближаемся к модели с Thinking. Для меня это слегка неожиданно, так как все последние папиры упирали на sequential scaling (чем дольше модель думает, тем лучше), а не на parallel (много независимых попыток)

- Из-за того, что генерации NoThining короче, их как раз можно достаточно хорошо распареллелить. Авторы показывают в том числе, что NoThining Парето-доминирует Thinking по латенси и pass@1, если мы, например, генерируем несколько вариантов ответа и выбираем финальный простым большинством

- Если обрывать Thinking модель на определенном числе токенов, чтобы зафорсить ее раньше сгенрировать финальный ответ, то NoThinking окажется строго лучше. То есть не ризонить в принципе оказывается лучше, чем поризонить не до конца. Отчасти можно объяснить это тем, что мы "обрываем" рассуждения модели таком образом в рандомном месте, но все равно неочевидное наблюдение

Самые важные здесь для меня выводы в следующем: 1) из первого пункта отлично видно, как RL с ризонингом вытягивает способности модели. То есть, что такие модели получают скоры выше не только потому, что могут дольше думать, планировать или подсматривать в свой набросок решения, но и потому, что просто оказываются умнее. 2) Все еще имеет смысл что-то делать с parallel scaling, хотя мне казалось, что всякие monte carlo tree search c LLM умерли вместе с выходом о1
🤯31👍103🔥3🙏1



tgoop.com/def_model_train/1063
Create:
Last Update:

Reasoning Models Can Be Effective Without Thinking
https://arxiv.org/abs/2504.09858


Уже писала парой постов выше, что меня очень интересует вопрос, насколько в ризонинге можно сократить использование большого числа ненужных токенов, но тут авторы сделали еще один шаг вперед и просто убрали ризонинг совсем. То есть сразу после промпта вставляли

<|beginning of thinking|>
Okay, I think I have finished thinking.
<|end of thinking|>


чтобы модель генерировала сразу финальный ответ

Результаты получились такие:
- Даже с отрубленным ризонингом, DeepSeek-R1-Distill-Qwen-32B на всех бенчах строго лучше Qwen-32B-Instruct

- Из коробки NoThinking сетап генерирует в 3.3–3.7 раз меньше токенов, чем та же модель с Thinking (то есть, когда модели позволяют целиком сгенерить ризонинг трейс). При этом, бенчи на доказательство теорем NoThinking подход решает даже лучше

- На остальных бенчах также ожидаемо pass@1 у NoThinking проседает, и чем больше k мы ставим, тем ближе приближаемся к модели с Thinking. Для меня это слегка неожиданно, так как все последние папиры упирали на sequential scaling (чем дольше модель думает, тем лучше), а не на parallel (много независимых попыток)

- Из-за того, что генерации NoThining короче, их как раз можно достаточно хорошо распареллелить. Авторы показывают в том числе, что NoThining Парето-доминирует Thinking по латенси и pass@1, если мы, например, генерируем несколько вариантов ответа и выбираем финальный простым большинством

- Если обрывать Thinking модель на определенном числе токенов, чтобы зафорсить ее раньше сгенрировать финальный ответ, то NoThinking окажется строго лучше. То есть не ризонить в принципе оказывается лучше, чем поризонить не до конца. Отчасти можно объяснить это тем, что мы "обрываем" рассуждения модели таком образом в рандомном месте, но все равно неочевидное наблюдение

Самые важные здесь для меня выводы в следующем: 1) из первого пункта отлично видно, как RL с ризонингом вытягивает способности модели. То есть, что такие модели получают скоры выше не только потому, что могут дольше думать, планировать или подсматривать в свой набросок решения, но и потому, что просто оказываются умнее. 2) Все еще имеет смысл что-то делать с parallel scaling, хотя мне казалось, что всякие monte carlo tree search c LLM умерли вместе с выходом о1

BY я обучала одну модель




Share with your friend now:
tgoop.com/def_model_train/1063

View MORE
Open in Telegram


Telegram News

Date: |

Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN. fire bomb molotov November 18 Dylan Hollingsworth yau ma tei According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. How to Create a Private or Public Channel on Telegram? The best encrypted messaging apps
from us


Telegram я обучала одну модель
FROM American