tgoop.com/def_model_train/1011
Last Update:
Пару дней назад у меня в школе был open Q&A с ресерчером из OpenAI Яном Кирхнером. Ян работает в Superalignment команде, и он один из соавторов очень крутой статьи Weak-to-strong generalization. Если TLDR, это статья про то, как не очень умные хуманы могут в перспективе обучать superhuman AI. В статье они используют GPT-2, чтобы генерировать фидбек для обучения гораздо большей GPT-4. В итоге такой фидбек от weak supervisor все равно получается лучше, чем обычный файнтюн, но разумеется не дотягивает до оригинальной GPT-4
Собственно команда Superalignment занята фундаментальным вопросом, как нам прыгнуть на голову выше человеческого перфоманса. Основная предпосылка тут, что обучаясь на человеческих данных (и на человеческих текстах, и на человеческой разметке), мы так и останемся примерно на уровне среднестатистических людей. Тут это напоминает Goodhart’s law: поскольку человеческая разметка в обучении стала таргетом, а не метрикой, то она перестает быть хорошей метрикой. Ян признается, что infinitely scalable solution for alignment у них еще нет, и что в течение 4-5 лет они надеются либо его найти, либо прийти к тому, что его не существует
Мне это рассуждение напомнило вот этот недавний твит, где автор приводит причины, почему обучаясь на человеческих данных мы все равно можем получить сильный AI:
1. Self-play. В этом году на эту тему вышла сначала статья SPIN, а потом Self-Rewarding Language Models от Meta. В последний модель учится сама быть и генератором, и разметчиком, и итеративно обучается на своем же фидбеке, при этом продолжая наращивать метрики (полоток в этой работе не был достигнут)
2. Aggregated peak performance – ни один участник межнара по математике не может решить все задачи сразу, но модель обучается на решениях всего и сразу
3. Aggregated knowledge – AI может “удерживать” в памяти гораздо больше изученного материала, чем люди в среднем
4. Speed – возможно AI не сможет стать умнее людей, но может значительно обойти из по скорости (см. LLaMA 3 on Groq), а это иногда решает
5. Unique data – можно обучить модель на огромном количестве очень специфичных данных, вроде структур белков, которые предсказывает AlphaFold. Такие данные людям слишком сложно воспринимать самим напрямую, и тем более не в таком объеме
В реплаях там накидали и критики этих тейков (feel free покритиковать их в коментах!), но мне показалось, что этот список неплохой + заставляет задуматься…
BY я обучала одну модель

Share with your friend now:
tgoop.com/def_model_train/1011
