Telegram Web
Стартовал 2 поток курса «Деплой DL-сервисов» 🚀

На этой неделе мы провели вводную встречу, на которой студенты нового потока познакомились друг с другом. А уже 25 марта ребят ждёт первая лекция по настройке репозитория🔥

Если вам тоже интересно научиться создавать и деплоить DL-сервисы и стать частью коммьюнити, которое объединяет опытных и начинающих специалистов из разных компаний и стран, то до первой лекции ещё можете присоединиться к курсу!

Узнать подробнее о программе и оплатить курс можно по ссылке!
🔥168👍8👏1😁1
Продвинутый Computer Vision

В базовых туториалах редко акцентируются на том, что сплошь и рядом встречается в реальных задачах: специфичные корнер-кейсы, шумные данные, трёхэтажные постпроцессинги и прочее.

Мы создали курс CV Rocket для практикующих CV-инженеров, чтобы показать инженерный взгляд на Computer Vision и помочь вам решать трудные задачи! На программе мы разберём большинство задач компьютерного зрения, погрузимся в сложные случаи, возможные проблемы с данными и интересные корнер-кейсы, вы узнаете лучшие практики и поймёте «а как же правильно».

Обучение начинается 13 мая!

Скоро мы будем знакомить вас с необычными задачами из Computer Vision и рассказывать подробнее про курс.

А сейчас изучайте программу и записывайтесь в лист ожидания!
Мы свяжемся, когда начнём собирать группу, расскажем о тарифах и подарим скидки на обучение первым участникам.
5🔥19👍9👏542😁2🤔2
Ускорение диффузионных моделей за счёт кэширования

При генерации диффузионными моделями мы много раз вызываем достаточно большую модель. Это делает процесс генерации очень долгим в сравнении с теми же GAN'ами, поэтому важно ускорять диффузионки.

Ускорить их можно двумя способами:
1. уменьшить количество шагов генерации
2. ускорить каждый шаг генерации

О втором методе мы и поговорим в новой статье. В ней мы рассмотрим две работы: DeepCache и Cache Me if You Can — в которых предлагают кэшировать часть фичей декодера UNet. Статьи вышли примерно в одно время, но в них есть различия, которые мы также обсудим.

Подробнее читайте по ссылке!

🪔 DeepSchool
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2310😍6👍21
✉️ Ответим на ваши вопросы!

Мы готовим материалы с разбором проблем DL-инженеров в рабочих проектах и хотим узнать, какие темы для вас интереснее всего!

Напишите, какие у вас есть вопросы по текущим задачам или в чём давно хотите разобраться, а мы выберем самые популярные темы и подготовим по ним статьи, видео и лекции!

Собираем идеи до 7 апреля включительно.
Оставляйте свои предложения в комментариях к посту или заполняйте форму.
Please open Telegram to view this post
VIEW IN TELEGRAM
12🔥7😍6😁1
Как перейти от простого обучения моделей к созданию полноценных NLP-систем?

Вы обучили свою LLM, построили эмбеддер или воспользовались API, но:
— RAG-решение галлюцинирует и не выдерживает нагрузку
— AI-агент не справляется с реальными сценариями
— Эмбеддинги плохо работают на специфичном домене
— Классификация и поиск дают нестабильные результаты
— Качество модели со временем падает

Эти проблемы — не редкость. Обучение модели — это только часть решения. Чтобы запустить рабочую NLP-систему, нужно уметь адаптировать её под домен и ограничения.

Мы готовим новый курс LLM Pro, на котором разберём, как строить системы, которые работают в реальном мире:
🔹 Соберём свою RAG-модель: от ретривера и реранкера до генерации ответов и оценки качества
🔹 Построим AI-агента, который сможет выполнять сложные сценарии
🔹 Настроим BERT и эмбеддинги под домен
🔹 Решим задачи классификации, поиска, кластеризации и NER с учётом ограничений

Это продвинутый курс для тех, кто хочет научиться строить надёжные NLP-решения!

🚀 Обучение стартует 22 мая!
📢 Записывайтесь в лист ожидания, чтобы первыми узнать подробности о курсе и получить лучшие условия на обучение.
1🔥25👍95👏1😁1
Как избежать хаоса в разметке данных и улучшить качество ML-моделей

Модель — вершина айсберга при построении качественного DL-решения. Почти всегда залог успеха — большое количество хорошо размеченных данных. И наоборот: даже самая сложная архитектура не спасёт, если данные размечены с большим количеством ошибок.
Плавающие инструкции, непроверенные аннотации, пограничные случаи и «интуитивная» логика разметчиков — всё это снижает точность и надёжность ML-систем.

В новой статье мы поговорим о том, как навести порядок в разметке:
📌 что такое Data-Centric AI и зачем он нужен
📌 какие ошибки чаще всего встречаются в разметке
📌 как организовать процесс, чтобы не переделывать потом весь датасет
📌 почему даже «простая» инструкция требует версионирования, онбординга и метрик

Читайте статью по ссылке!
7🔥2512😍6👍3🙏2😁1
YOLO history. Part 7

Продолжаем разбор моделей из семейства YOLO 😉

2024 год, похоже, стал рекордным по количеству релизов: сразу четыре новые модели пополнили семейство YOLO. Чтобы за ними успеть, сегодня мы разберём сразу две архитектуры: YOLOv7 и YOLOv9. Обе они разработаны авторами YOLOv4, но при этом демонстрируют разные подходы к архитектуре и обучению.

В этой статье мы узнаем:

- что общего между 7-ой и 9-ой версиями и чем они отличаются от 4-ой
- чем отличаются аббревиатуры ELAN, E-ELAN и GELAN
- зачем нужны вспомогательные модели и как их можно использовать для ускорения обучения

Читайте новую статью по ссылке!
🔥3011😍7👏41
DeepSchool Digest⚡️

Уже по традиции: собрали все материалы за прошедший месяц в одном посте⤵️

✔️ Внедряем модель c использованием model-serving фреймворков, NVIDIA Triton и Torchserve — рассказываем о процессе внедрения нейронных сетей и фреймворках сервинга — инструментах, которые помогают его упростить.

✔️ End-to-End модели OCR — знакомим с End-to-End решениями — решениями задачи детекции, распознавания и извлечения ключевой информации всего лишь одной моделью.

✔️ Ускорение диффузионных моделей за счёт кэширования — рассматриваем ещё одну парадигму ускорения диффузионных моделей — ускорение самого шага сэмплирования. В этом обзоре разбираем две работы про кэширование при сэмплировании для свёрточных диффузионных моделей.

✔️ Как избежать хаоса в разметке данных и улучшить качество ML-моделей — разбираем, как можно избежать хаоса в разметке данных, и почему это влияет на качество ML-моделей.

✔️ YOLO history. Part 7 — продолжаем разбор моделей из семейства YOLO. В этой статье разобрали сразу две архитектуры: YOLOv7 и YOLOv9.
Please open Telegram to view this post
VIEW IN TELEGRAM
22👍17🔥15👏1😁1
Score Distillation Sampling в задаче text-to-3D

Диффузионные модели активно используются в задачах генерации 2D, будь то изображения или видео. Современные text-to-image модели обучались на огромном корпусе данных и в результате научились генерировать разнообразные картинки высокого качества. Однако как применить диффузионные модели в 3D?

Одно из возможных решений этой проблемы — метод, предложенный в работе DreamFusion — Score Distillation Sampling. Авторы предлагают использовать знания, которые есть в предобученной text-to-image модели для обучения 3D генератора.

В новом посте разберём основную идею метода, а также, в каких ещё задачах применяется такой подход. Рассмотрим интуицию, а также математику идеи и посмотрим, какие результаты можно получить.

Читайте по ссылке!

🪔 DeepSchool
Please open Telegram to view this post
VIEW IN TELEGRAM
20🔥14👍4😍2
Masked Image Modeling

Когда в мире существуют огромные запасы неразмеченных данных — книги, статьи, фотоальбомы, видеоролики, возникает естественный вопрос: «Как можно использовать такой почти неограниченный ресурс для обучения нейронных сетей без трудоёмкой ручной разметки?».

Здесь нам на помощь приходят методы Self-Supervised Learning (SSL) — они позволяют извлекать полезную информацию напрямую из самих данных.

В новом посте мы познакомимся с одним из самых перспективных направлений SSL в Computer Vision — Masked Image Modeling, а также узнаем, что это, как появилось и где стоит использовать.

Читайте новую статью по ссылке!
🔥19👍137❤‍🔥4🤩2
⚡️Почти через месяц стартует курс Computer Vision Rocket

Вы погрузитесь в продвинутый Computer Vision: от сложностей и корнер-кейсов в «обычных» задачах до мультимодальных моделей и дизайна CV-систем.

А пока вы ожидаете, предлагаем прочитать подборку статей по CV!

1. Введение в OCR. Часть 1
2. Как избежать хаоса в разметке данных и улучшить качество ML-моделей
3. DINO: Self-distilation with no labels
4. Few-shot learning
5. Интерпретация моделей компьютерного зрения

Изучайте статьи и записывайтесь в лист ожидания на курс, который стартует 13 мая
Please open Telegram to view this post
VIEW IN TELEGRAM
🤩14🔥98👍3👏1
Из ML в разработку. Почему? Подкаст «Под Капотом» с Константином Носоревым

Мы приглашаем в подкаст экспертов из различных областей, чтобы понять, как работают сложные системы изнутри. В новом выпуске подкаста поговорили с Костей Носоревым, senior backend-разработчиком Yandex Pay и спикером курса «Деплой DL-сервисов». Обсудили, почему Костя решил перейти в высоконагруженный backend из машинного обучения, почему исследовательский МЛ подходит далеко не всем и как общение с близкими людьми помогает принимать верные карьерные решения.

Смотрите выпуск по ссылке: https://youtu.be/uYiSMOR0AB0?si=qnMTRP8zOcTi5wlp

Новый поток курса «Деплой DL-сервисов» с участием Кости стартует в июле. Подробнее на нашем сайте!
🔥2913😍6👍32❤‍🔥1🤝1
Жизнь CV-модели после релиза

После релиза работа не заканчивается — и именно здесь начинаются реальные сложности. Как понять, что модель начала деградировать? Как построить поддержку, если в команде нет лишних рук? Как мониторить предсказания CV-модели?

Мы подготовили открытую лекцию, на которой разберём, где и что может пойти не так после релиза, как это вовремя заметить, и что делать, если количество моделей растёт, а команда всё та же.

На лекции расскажем:
- как в реальности выглядит цикл жизни CV-модели
- как выстраивать поддержку: что можно автоматизировать, а что — нет
- как следить за качеством модели: дрифты, аутлаеры, шум, ключевые метрики
- какие есть подходы для автоматизации мониторинга модели
- и спроектируем возможное решение на примере реальной задачи

А также представим программу курса CV Rocket и подарим скидки на обучение всем участникам лекции!

Обо всём этом расскажут:
— Анастасия Старобыховская — руководитель CV-направления НЛМК ИТ
— Тимур Фатыхов — основатель DeepSchool, ex Lead CV Engineer, KoronaPay

🗓 24 апреля, четверг, 18:00 МСК.

Регистрируйтесь по ссылке — увидимся в четверг!
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥13👍86
Сбор данных и разметка: как с нуля собрать хорошие данные под реальную ML-задачу?

Хорошие данные — залог успеха. Но на практике это недели и месяцы разметки, потраченные ресурсы, спорные инструкции и баги.

Хорошая новость: эти проблемы уже решаются — с помощью LLM, гибридных пайплайнов и продуманных процессов.

В статье расскажем, как меняется подход к разметке и что уже работает на практике:
- как использовать LLM в роли разметчика и быстро получить данные
- где всё ещё нужен человек и зачем
- как выстроить крауд-пайплайн, которому можно доверять
Плюс: советы, хаки и кейсы с цифрами.

Читайте подробнее по ссылке!

🪔 DeepSchool
Please open Telegram to view this post
VIEW IN TELEGRAM
422🔥14👍8😁2
DeepSchool
Жизнь CV-модели после релиза После релиза работа не заканчивается — и именно здесь начинаются реальные сложности. Как понять, что модель начала деградировать? Как построить поддержку, если в команде нет лишних рук? Как мониторить предсказания CV-модели? …
Начинаем через 3 часа

Сегодня на лекции расскажем, зачем нужна поддержка модели, с какими проблемами сталкиваются инженеры и как выстраивать работу!

И в конце представим программу курса Computer Vision Rocket 🔥
Участники лекции смогут занять место на программе на выгодных условиях!

Регистрируйтесь и приходите сегодня в 18:00 МСК!
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥6👍4😍4
Как стать сильнее как CV-инженер

Работая с CV-задачами, вы наверняка сталкивались с нестабильными данными, компромиссами между качеством и скоростью, ошибками разметки, сложными кейсами, в которых нет однозначного решения.

Мы подготовили курс Computer Vision Rocket для практикующих инженеров, чтобы вы могли разобраться с такими задачами и освоить цикл создания и поддержки CV-моделей: от сбора данных до поиска ошибок и интерпретируемости.

В рамках курса вы научитесь:
🔹готовить данные под реальные задачи: искать, размечать, синтезировать
🔹находить и устранять ошибки в данных и разметке, улучшать качество
🔹настраивать пайплайны metric learning и векторного поиска, включая построение индексов
🔹адаптировать детекторы, сегментаторы и OCR-системы под сложные кейсы
🔹диагностировать деградацию моделей и находить проблемы через интерпретируемость
🔹проектировать CV-систему целиком: от данных до поддержки

Лекции проходят онлайн в Zoom, поэтому вы сможете задавать вопросы по ходу занятия.
Вы узнаете про подходы и best pratices от senior-инженеров из разных доменов и компаний. Они проверят ваши домашние задания и дадут развёрнутый фидбек!

CV Rocket цифрах:
4 месяца, 13 лекций, 13 заданий с фидбеком от опытных инженеров.

🗓 Начинаем 13 мая!
🔥 До 12 мая вы можете присоединиться к обучению со скидкой!

Переходите по ссылке, изучайте подробности и записывайтесь на обучение!
Если у вас есть вопросы, то пишите в нашу поддержку @deepschool_support, будем рады помочь.

До встречи на курсе! 🎓
Please open Telegram to view this post
VIEW IN TELEGRAM
10🔥6👏4❤‍🔥1😍1
Ванильный RAG не работает. Как исправить?

RAG — один из самых популярных подходов для интеграции LLM в реальные продукты. Его выбирают, когда нужно давать точные, верифицируемые ответы на основе собственной базы знаний. Но на практике такие решения почти никогда не работают «из коробки»: вместо полезных ответов — галлюцинации, поверхностные обобщения или просто тишина.

Причин много: эмбеддер не улавливает смысл запроса, поиск не находит нужные документы, генератор не может извлечь то, чего нет в извлеченном контексте. А когда всё ломается — непонятно, с чего начать: тюнить эмбеддер? дообучать генератор? улучшать данные?

В эту среду мы проведём открытую лекцию, на которой разберём, как в этой системе навести порядок: что действительно влияет на качество ответов, как выстроить пайплайн правильно и превратить RAG из хаотичного набора компонентов в надёжный рабочий инструмент.

На лекции расскажем:
- почему ванильная схема «ретривер + генератор» почти никогда не даёт нужного качества
- с чего начинать улучшения: эмбеддер, поиск, реранкер, генератор, данные или что-то ещё
- какие задачи приходится решать, чтобы RAG действительно работал
- как из разрозненных компонент собрать надежный RAG-продукт

Также на лекции мы представим курс LLM Pro — продвинутую программу, на которой вы научитесь строить системы, которые работают в реальном мире!
А участникам лекции подарим скидки на обучение 🎁

📅 Лекция пройдёт 30 апреля в 18:00 МСК

Регистрируйтесь по ссылке и до встречи на лекции в среду!
🔥1512👍5🤩2
DeepSchool
Ванильный RAG не работает. Как исправить? RAG — один из самых популярных подходов для интеграции LLM в реальные продукты. Его выбирают, когда нужно давать точные, верифицируемые ответы на основе собственной базы знаний. Но на практике такие решения почти…
Через 3 часа встречаемся на лекции

Сегодня расскажем, что действительно влияет на качество ответов, как выстроить пайплайн правильно и превратить RAG из хаотичного набора компонентов в надёжный рабочий инструмент!

А также представим программу курса LLM Pro и подарим скидки 🔥

Регистрируйтесь и приходите сегодня в 18:00 МСК!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥94🤝3👍1😍1
LLM-системы, которые реально работают

Вчера на открытой лекции мы представили наш новый курс LLM Pro 🎉
Это продвинутая программа для тех, кто уже работает с LLM и хочет решать сложные задачи!

На обучении вы соберёте полноценные LLM-системы с учётом требований к качеству и нагрузке, разберёте сложные кейсы и дизайны NLP-решений: от кластеризации и эмбеддеров до сложных RAG-систем и агентов.

В рамках курса вы научитесь:
🔹проектировать и запускать NLP-системы под реальные продуктовые задачи
🔹адаптировать LLM и эмбеддинги под специфичный домен и «живые» данные
🔹собирать и размечать датасеты — даже если данных изначально почти нет
🔹решать задачи классификации, поиска, кластеризации и NER — с ограничениями продакшн-среды
🔹собирать свою RAG-систему: от ретривера и реранкера до генератора и оценки качества
🔹строить AI-агентов с нуля — на основе сценариев, функций и взаимодействия с внешней средой

Вы разберёте реальные кейсы и научитесь применять похожие подходы в своих проектах, получите фундамент для уверенного прохождения NLP system design интервью и перехода на следующий грейд.

🤖 Старт 22 мая, а до 21 мая для вас действует скидка 5%

Переходите на сайт, изучайте подробности и присоединяйтесь к обучению!

Пишите в нашу поддержку @deepschool_support, если остались вопросы!
И до встречи на курсе!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15🤩1371
DeepSchool Digest⚡️

Собрали материалы за апрель в одном посте⬇️

✔️ Score Distillation Sampling в задаче text-to-3D - разбираем основную идею метода, а также, в каких ещё задачах применяется такой подход.

✔️ Masked Image Modeling - знакомимся с одним из самых перспективных направлений SSL в Computer Vision — Masked Image Modeling и рассказываем, что это, как появилось и где стоит использовать.

✔️ Сбор данных и разметка: как с нуля собрать хорошие данные под реальную задачу? - рассказываем, как меняется подход к разметке и что уже работает на практике. Плюс: советы, хаки и кейсы с цифрами.

✔️ Из ML в разработку. Почему? Подкаст «Под Капотом» с Константином Носоревым - поговорили с Костей Носоревым, senior backend-разработчиком Yandex Pay и спикером курса «Деплой DL-сервисов», обсудили, почему Костя решил перейти в высоконагруженный backend из машинного обучения, почему исследовательский МЛ подходит далеко не всем и как общение с близкими людьми помогает принимать верные карьерные решения.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍108👏1
2025/10/19 18:04:59
Back to Top
HTML Embed Code: