یادگیری عمیق با رویکرد ریاضی محور
(مناسب برای نوشتن مقاله، پایان نامه و انجام پروژه های تجاری)
https://www.biasvariance.ir/courses/deep-learning-engineer-full/
ویژگی های دوره :
- بررسی بهینه سازی محدب، آمار، ریاضیات و جبر خطی مربوط به یادگیری عمیق
- بررسی مقالات متعدد
- بررسی جزئیات محاسبات و عملیات شبکه ها
- بررسی یادگیری عمیق در حوزه های بینایی ماشین، پردازش زبان طبیعی و ...
- بررسی عملکرد شبکه ها و مقایسه آنها
#اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
(مناسب برای نوشتن مقاله، پایان نامه و انجام پروژه های تجاری)
https://www.biasvariance.ir/courses/deep-learning-engineer-full/
ویژگی های دوره :
- بررسی بهینه سازی محدب، آمار، ریاضیات و جبر خطی مربوط به یادگیری عمیق
- بررسی مقالات متعدد
- بررسی جزئیات محاسبات و عملیات شبکه ها
- بررسی یادگیری عمیق در حوزه های بینایی ماشین، پردازش زبان طبیعی و ...
- بررسی عملکرد شبکه ها و مقایسه آنها
#اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
چند روز پیش مقاله جالبی چاپ شد به نام:
A survey on deep learning for challenged networks: Applications and trends
Computer networks are dealing with growing complexity, given the ever-increasing volume of data produced by
all sorts of network nodes. Performance improvements are a non-stop ambition and require tuning fine-grained
details of the system operation. Analyzing such data deluge, however, is not straightforward and sometimes not
supported by the system. There are often problems regarding scalability and the predisposition of the involved
nodes to understand and transfer the data. This issue is at least partially circumvented by knowledge acquisition
from past experiences, which is a characteristic of the herein called ‘‘challenged networks’’. The addition of
intelligence in these scenarios is fundamental to extract linear and non-linear relationships from the data
collected by multiple sources. This is undoubtedly an invitation to machine learning and, more particularly,
to deep learning ...
کاربرد یادگیری عمیق در IOT در حال افزایش است.
#معرفی_مقاله #یادگیری_عمیق #IOT
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
A survey on deep learning for challenged networks: Applications and trends
Computer networks are dealing with growing complexity, given the ever-increasing volume of data produced by
all sorts of network nodes. Performance improvements are a non-stop ambition and require tuning fine-grained
details of the system operation. Analyzing such data deluge, however, is not straightforward and sometimes not
supported by the system. There are often problems regarding scalability and the predisposition of the involved
nodes to understand and transfer the data. This issue is at least partially circumvented by knowledge acquisition
from past experiences, which is a characteristic of the herein called ‘‘challenged networks’’. The addition of
intelligence in these scenarios is fundamental to extract linear and non-linear relationships from the data
collected by multiple sources. This is undoubtedly an invitation to machine learning and, more particularly,
to deep learning ...
کاربرد یادگیری عمیق در IOT در حال افزایش است.
#معرفی_مقاله #یادگیری_عمیق #IOT
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
یکی از سوالاتی که معمولا برای پژوهشگران یادگیری پیش می آید این است که در شبکه ها چه چیزی یاد گرفته می شود.
بر روی نودها کلیک کنید تا به نمایش درآید.
http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
#نکته_آموزشی #بصری_سازی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
بر روی نودها کلیک کنید تا به نمایش درآید.
http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
#نکته_آموزشی #بصری_سازی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
بدلیل زیاد بودن ژورنالها و کنفرانسهای یادگیری، خیلی از افراد دوست دارند تا از مقالات مهم پیرامون مطالعاتشان آگاه شوند. آرکایو سنیتی یک سایت مناسب است که در این زمینه میتواند به شما کمک کند:
https://github.com/karpathy/arxiv-sanity-preserver
This project is a web interface that attempts to tame the overwhelming flood of papers on Arxiv. It allows researchers to keep track of recent papers, search for papers, sort papers by similarity to any paper, see recent popular papers, to add papers to a personal library, and to get personalized recommendations of (new or old) Arxiv papers. This code is currently running live at www.arxiv-sanity.com/, where it's serving 25,000+ Arxiv papers from Machine Learning (cs.[CV|AI|CL|LG|NE]/stat.ML) over the last ~3 years. With this code base you could replicate the website to any of your favorite subsets of Arxiv ...
#معرفی_سایت
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://github.com/karpathy/arxiv-sanity-preserver
This project is a web interface that attempts to tame the overwhelming flood of papers on Arxiv. It allows researchers to keep track of recent papers, search for papers, sort papers by similarity to any paper, see recent popular papers, to add papers to a personal library, and to get personalized recommendations of (new or old) Arxiv papers. This code is currently running live at www.arxiv-sanity.com/, where it's serving 25,000+ Arxiv papers from Machine Learning (cs.[CV|AI|CL|LG|NE]/stat.ML) over the last ~3 years. With this code base you could replicate the website to any of your favorite subsets of Arxiv ...
#معرفی_سایت
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
GitHub
GitHub - karpathy/arxiv-sanity-preserver: Web interface for browsing, search and filtering recent arxiv submissions
Web interface for browsing, search and filtering recent arxiv submissions - karpathy/arxiv-sanity-preserver
برای اینکه گام به گام با آموزش شبکه عصبی آشنا شوید:
https://playground.tensorflow.org/
#نکته_آموزشی #بصری_سازی #معرفی_سایت #یادگیری_عمیق #tensorflow
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://playground.tensorflow.org/
#نکته_آموزشی #بصری_سازی #معرفی_سایت #یادگیری_عمیق #tensorflow
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
playground.tensorflow.org
Tensorflow — Neural Network Playground
Tinker with a real neural network right here in your browser.
Denoising Autoencoder demo
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
#معرفی_سایت #نکته_آموزشی #بصری_سازی #auto_encoder
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
#معرفی_سایت #نکته_آموزشی #بصری_سازی #auto_encoder
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Telegram
Bias Variance
🌴 سایت:
https://biasvariance.net
🌺 کانال تلگرام:
@biasvariance_ir
🌳 پشتیبانی:
@biasvariance
🌷 اینستاگرام:
https://www.instagram.com/bvariance/
https://biasvariance.net
🌺 کانال تلگرام:
@biasvariance_ir
🌳 پشتیبانی:
@biasvariance
🌷 اینستاگرام:
https://www.instagram.com/bvariance/
Media is too big
VIEW IN TELEGRAM
مغز ما در چه زمانهایی قدرت یادگیری دارد؟ آیا این توانایی در زمانهای متفاوت یکسان است؟
#ویدیو_آموزشی #ویدیو #یادگیری_مغز
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
#ویدیو_آموزشی #ویدیو #یادگیری_مغز
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://www.namasha.com/v/Srl6yAgM
#نکته_آموزشی #negative_sampling #ویدیو #NLP #پردازش_زبان_طبیعی #اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
#نکته_آموزشی #negative_sampling #ویدیو #NLP #پردازش_زبان_طبیعی #اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
نماشا - سرویس رایگان اشتراک ویدیو
word2vec - Negative Sampling - یادگیری عمیق - deep learning
وبسایت بایاس واریانس: https://biasvariance.ir در دوره آموزشی یادگیری عمیق با رویکرد ریاضی محور سعی شده است تا مباحث مربوط به یادگیری عمیق پوشش داده شود. در این دوره وارد جزییات نظری و ریاضیات مربوط به یادگیری عمیق خواهیم شد تا فراگیران این مجموعه بعد از این…
در این ویدیو در مورد روشهای تکراری یا روشهای iterative صحبت کرده ایم. اگر نمی دانید در ریاضیات و یادگیری عمیق چرا از روشهای تکراری استفاده می شود، این ویدیو را مشاهده کنید.
https://www.namasha.com/v/eKmXEYCs
#ویدیو #نکته_آموزشی #اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://www.namasha.com/v/eKmXEYCs
#ویدیو #نکته_آموزشی #اطلاع_رسانی #دوره_آموزشی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
نماشا - سرویس رایگان اشتراک ویدیو
روشهای iterative - آموزش یادگیری عمیق - deep learning
وبسایت بایاس واریانس: https://biasvariance.ir در دوره آموزشی یادگیری عمیق با رویکرد ریاضی محور سعی شده است تا مباحث مربوط به یادگیری عمیق پوشش داده شود. در این دوره وارد جزییات نظری و ریاضیات مربوط به یادگیری عمیق خواهیم شد تا فراگیران این مجموعه بعد از این…
Media is too big
VIEW IN TELEGRAM
Best python library for neural networks
https://datascience.stackexchange.com/questions/694/best-python-library-for-neural-networks
#دیتاساینس #نکته_آموزشی #شبکه_عصبی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://datascience.stackexchange.com/questions/694/best-python-library-for-neural-networks
#دیتاساینس #نکته_آموزشی #شبکه_عصبی #یادگیری_عمیق
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Data Science Stack Exchange
Best python library for neural networks
I'm using Neural Networks to solve different Machine learning problems. I'm using Python and pybrain but this library is almost discontinued. Are there other good alternatives in Python?
How are 1x1 convolutions the same as a fully connected layer?
https://datascience.stackexchange.com/questions/12830/how-are-1x1-convolutions-the-same-as-a-fully-connected-layer
#یادگیری_عمیق #نکته_آموزشی #دیتاساینس #network_in_network #شبکه_کانولوشنی #NiN
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
https://datascience.stackexchange.com/questions/12830/how-are-1x1-convolutions-the-same-as-a-fully-connected-layer
#یادگیری_عمیق #نکته_آموزشی #دیتاساینس #network_in_network #شبکه_کانولوشنی #NiN
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Data Science Stack Exchange
How are 1x1 convolutions the same as a fully connected layer?
I recently read Yan LeCuns comment on 1x1 convolutions:
In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution
In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution
یکی از مشکلاتی که شبکه های عصبی را تهدید می کند adversarial attack است که سبب می شود در کاربرهای حساس، استفاده از یادگیری عمیق تحت الشعاع قرار گیرد. در این زمینه کارهای زیادی صورت گرفته است. اخیرا مقاله ای چاپ شده است پیرامون این موضوع برای auto-driving سیستمها.
Deep learning-based auto-driving systems are vulnerable to adversarial examples attacks which may result in wrong decision making and accidents. An adversarial example can fool the well trained neural networks by adding barely imperceptible perturbations to clean data. In this paper, we explore the mechanism of adversarial examples and adversarial robustness from the perspective of statistical mechanics, and propose an statistical mechanics-based interpretation model of adversarial robustness. The state transition caused by adversarial training based on the theory of fluctuation dissipation disequilibrium in statistical mechanics is formally constructed. Besides, we fully study the adversarial example attacks and training process on system robustness, including the influence of different training processes on network robustness. Our work is helpful to understand and explain the adversarial examples problems and improve the robustness of deep learning-based auto-driving systems.
https://ieeexplore.ieee.org/abstract/document/9539019
#معرفی_مقاله #یادگیری_عمیق #adversarial
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Deep learning-based auto-driving systems are vulnerable to adversarial examples attacks which may result in wrong decision making and accidents. An adversarial example can fool the well trained neural networks by adding barely imperceptible perturbations to clean data. In this paper, we explore the mechanism of adversarial examples and adversarial robustness from the perspective of statistical mechanics, and propose an statistical mechanics-based interpretation model of adversarial robustness. The state transition caused by adversarial training based on the theory of fluctuation dissipation disequilibrium in statistical mechanics is formally constructed. Besides, we fully study the adversarial example attacks and training process on system robustness, including the influence of different training processes on network robustness. Our work is helpful to understand and explain the adversarial examples problems and improve the robustness of deep learning-based auto-driving systems.
https://ieeexplore.ieee.org/abstract/document/9539019
#معرفی_مقاله #یادگیری_عمیق #adversarial
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
ieeexplore.ieee.org
Interpreting Adversarial Examples and Robustness for Deep Learning-Based Auto-Driving Systems
Deep learning-based auto-driving systems are vulnerable to adversarial examples attacks which may result in wrong decision making and accidents. An adversarial example can fool the well trained neural networks by adding barely imperceptible perturbations…
معرفی مقاله: Deep learning for autonomous vehicle and pedestrian interaction safety
The present work aims to study how deep learning approaches solve the safety problems in the interaction between autonomous vehicles and pedestrians. A Vehicle-Pedestrian Detection (VPD) algorithm based on Convolutional Neural Network (CNN) is proposed regarding the massive amounts of parameters during feature extraction of traditional vehicle–pedestrian interaction algorithms. Furthermore, the Squeezenet algorithm is applied to extract traffic characteristics with fewer parameters. The performance of the proposed algorithm is analyzed through simulation experiments. Results demonstrate that when the successful transmission probability reaches 100% and the λ value is 0.01–0.05, the proposed algorithm can provide the result closest to the actual value, with the smallest data delay and the highest data transmission security. In different categories, the proposed algorithm can provide the highest accuracy as the number of iterations increases compared with other algorithms (AlexNet, DenseNet, VGGNet, IGCNet, and ResNet), which can accurately forecast traffic safety accidents. The proposed algorithm can provide an accuracy of 81.98%, an improvement of at least 1.94% over other advanced CNNs, and at least 3.3% over algorithms included in comparative simulations. Hence, it can recognize and identify safe interactions between autonomous vehicles and pedestrians. Through experiments, the constructed algorithm can significantly reduce the data transmission delay, improve the prediction accuracy of the safe interaction between autonomous vehicles and pedestrians, and increase the recognition accuracy remarkably, which can provide experimental references for the intelligent development of the transportation industry in the future.
paper link: https://www.sciencedirect.com/science/article/pii/S0925753521003222
#معرفی_مقاله #یادگیری_عمیق #self_driving_car
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
The present work aims to study how deep learning approaches solve the safety problems in the interaction between autonomous vehicles and pedestrians. A Vehicle-Pedestrian Detection (VPD) algorithm based on Convolutional Neural Network (CNN) is proposed regarding the massive amounts of parameters during feature extraction of traditional vehicle–pedestrian interaction algorithms. Furthermore, the Squeezenet algorithm is applied to extract traffic characteristics with fewer parameters. The performance of the proposed algorithm is analyzed through simulation experiments. Results demonstrate that when the successful transmission probability reaches 100% and the λ value is 0.01–0.05, the proposed algorithm can provide the result closest to the actual value, with the smallest data delay and the highest data transmission security. In different categories, the proposed algorithm can provide the highest accuracy as the number of iterations increases compared with other algorithms (AlexNet, DenseNet, VGGNet, IGCNet, and ResNet), which can accurately forecast traffic safety accidents. The proposed algorithm can provide an accuracy of 81.98%, an improvement of at least 1.94% over other advanced CNNs, and at least 3.3% over algorithms included in comparative simulations. Hence, it can recognize and identify safe interactions between autonomous vehicles and pedestrians. Through experiments, the constructed algorithm can significantly reduce the data transmission delay, improve the prediction accuracy of the safe interaction between autonomous vehicles and pedestrians, and increase the recognition accuracy remarkably, which can provide experimental references for the intelligent development of the transportation industry in the future.
paper link: https://www.sciencedirect.com/science/article/pii/S0925753521003222
#معرفی_مقاله #یادگیری_عمیق #self_driving_car
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Sciencedirect
Deep learning for autonomous vehicle and pedestrian interaction safety
The present work aims to study how deep learning approaches solve the safety problems in the interaction between autonomous vehicles and pedestrians. …
در ادامه مقاله مروری که برای یادگیری عمیق تقویتی به تازگی به چاپ رسیده قرار دارد:
Shortening product development cycles and fully customisable products pose major challenges for production systems. These not only have to cope with an increased product diversity but also enable high throughputs and provide a high adaptability and robustness to process variations and unforeseen incidents. To overcome these challenges, deep Reinforcement Learning (RL) has been increasingly applied for the optimisation of production systems. Unlike other machine learning methods, deep RL operates on recently collected sensor-data in direct interaction with its environment and enables real-time responses to system changes. Although deep RL is already being deployed in production systems, a systematic review of the results has not yet been established. The main contribution of this paper is to provide researchers and practitioners an overview of applications and to motivate further implementations and research of deep RL supported production systems. Findings reveal that deep RL is applied in a variety of production domains, contributing to data-driven and flexible processes. In most applications, conventional methods were outperformed and implementation efforts or dependence on human experience were reduced. Nevertheless, future research must focus more on transferring the findings to real-world systems to analyse safety aspects and demonstrate reliability under prevailing conditions.
لینک مقاله: https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1973138
بدلیل قابلیت تصمیم گیری و کنترلی که یادگیری عمیق تقویتی دارد، این زمینه مقالات جالب فراوانی را در بر می گیرد که می توان روی آنها کار کرد.
#یادگیری_عمیق #یادگیری_تقویتی #معرفی_مقاله #مقاله_مروری
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Shortening product development cycles and fully customisable products pose major challenges for production systems. These not only have to cope with an increased product diversity but also enable high throughputs and provide a high adaptability and robustness to process variations and unforeseen incidents. To overcome these challenges, deep Reinforcement Learning (RL) has been increasingly applied for the optimisation of production systems. Unlike other machine learning methods, deep RL operates on recently collected sensor-data in direct interaction with its environment and enables real-time responses to system changes. Although deep RL is already being deployed in production systems, a systematic review of the results has not yet been established. The main contribution of this paper is to provide researchers and practitioners an overview of applications and to motivate further implementations and research of deep RL supported production systems. Findings reveal that deep RL is applied in a variety of production domains, contributing to data-driven and flexible processes. In most applications, conventional methods were outperformed and implementation efforts or dependence on human experience were reduced. Nevertheless, future research must focus more on transferring the findings to real-world systems to analyse safety aspects and demonstrate reliability under prevailing conditions.
لینک مقاله: https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1973138
بدلیل قابلیت تصمیم گیری و کنترلی که یادگیری عمیق تقویتی دارد، این زمینه مقالات جالب فراوانی را در بر می گیرد که می توان روی آنها کار کرد.
#یادگیری_عمیق #یادگیری_تقویتی #معرفی_مقاله #مقاله_مروری
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Taylor & Francis
Deep reinforcement learning in production systems: a systematic literature review
Shortening product development cycles and fully customisable products pose major challenges for production systems. These not only have to cope with an increased product diversity but also enable h...
یکی از انقلابی ترین مقالات در زمینه یادگیری تقویتی عمیق در زمینه روشهای ارزش محور مقاله Dueling DQN است که مشکلات اساسی شبکه های عصبی برای یادگیری تقویتی را سعی می کند تا حل کند.
لینک مقاله: https://arxiv.org/pdf/1511.06581.pdf
لینک پیاده سازی: https://paperswithcode.com/paper/dueling-network-architectures-for-deep
#معرفی_مقاله #یادگیری_عمیق #یادگیری_عمیق_تقویتی
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
لینک مقاله: https://arxiv.org/pdf/1511.06581.pdf
لینک پیاده سازی: https://paperswithcode.com/paper/dueling-network-architectures-for-deep
#معرفی_مقاله #یادگیری_عمیق #یادگیری_عمیق_تقویتی
🌴 سایت | 🌺 کانال | 🌳 پشتیبانی
Paperswithcode
Papers with Code - Dueling Network Architectures for Deep Reinforcement Learning
🏆 SOTA for Atari Games on Atari 2600 Pong (Score metric)