Telegram Web
مکانیزیم Attention در یادگیری عمیق
👩‍💻هما کاشفی امیری
🗓30 آذر 1402

✍️با پیچیده‌تر شدن مدل‌های یادگیری عمیق، نیاز به روش‌های موثر پردازش حجم زیادی از داده، اهمیت فزاینده‌ای پیدا کرده است. یکی از این روش‎ها، مکانیزیم توجه (attention) است که به مدل امکانی می‌دهد تا در هنگام پیش بینی بر مرتبط‌ترین اطلاعات، تمرکز کند و پیش‌بینی را بر اساس آنها انجام دهد.

⭕️ جزئیات بیشتر 👇
https://onlinebme.com/%d9%8eattention-in-deep-learning/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍63
Onlinebme
Pytorch and Neural Networks#problem04.pdf
Pytorch and Neural Networks#Project03.pdf
650 KB
🔥دوره پایتورچ
📝  فصل چهارم: شبکه عصبی تک لایه
🔷 پروژه سری سوم
@Onlinebme
👍9
Onlinebme
پارامترهای ارزیابی در مسائل رگرسیون و طبقه بندی 🧑‍💻محمد نوری زاده چرلو 🗓27 آذر 1402 در طراحی و تعیین پارامترهای یک مدل یادگیری ماشین، روشها و پارامترهای ارزیابی نقش بسیار مهمی دارند. چرا که به ما کمک می‌کنند دید درستی به مدل طراحی شده داشته باشیم و متوجه…
حالت های ارائه داده آموزشی به شبکه های عصبی
#PyTorch
👨‍💻محمد نوری زاده چرلو
🗓 04 دی 1402

در آموزش شبکه های عصبی، داده های آموزش را میتوان به سه شکل pattern mode, batch-mode و mini-batch به شبکه عصبی ارائه داد. هرکدام از این حالتها مزایا و معایب خودشون رو دارند. در این پست میخواهیم با هر سه حالت آموزش شبکه عصبی و مزایا و معایب آنها آشنا شویم و در آخر هم بررسی می‌کنیم که batch-size را چند در نظر بگیریم بهتر است و داستان عدد جادویی 32 چیه؟

🔘 جزئیات بیشتر 👇
https://onlinebme.com/pattern-mode-batch-mode-and-mini-batch-mode-in-training-neural-networks/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍8
رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون
#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓7 دی 1402

✍️در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیج MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/working-with-sensor-locations-with-mne-python/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍8
سال نو میلادی بر هم‌وطنان عزیز مسیحی مبارک باشه❤️

@onlinebme
20
Onlinebme
Pytorch and Neural Networks#Project03.pdf
Pytorch and Neural Networks#Project04.pdf
1.9 MB
دوره پایتورچ
🔷  فصل پنجم: شبکه عصبی MLP
🔘▪️ پروژه عملی: سری چهارم
@Onlinebme
👍12
Onlinebme
حالت های ارائه داده آموزشی به شبکه های عصبی #PyTorch 👨‍💻محمد نوری زاده چرلو 🗓 04 دی 1402 در آموزش شبکه های عصبی، داده های آموزش را میتوان به سه شکل pattern mode, batch-mode و mini-batch به شبکه عصبی ارائه داد. هرکدام از این حالتها مزایا و معایب خودشون…
شبکه عصبی پرسپترون چند لایه و مسائل غیرخطی
👨‍💻محمد نوری زاده چرلو
19 دی 1402
#PyTorch

شبکه عصبی پرسپترون چندلایه از سه نوع لایه ورودی، پنهان و خروجی تشکیل شده است. از قانون یادگیری پس انتشار خطا برای تنظیم وزنهای سیناپسی خود استفاده می‌کند و میتواند در مسائل طبقه بندی، رگرسیون و مدلسازی استفاده شود. در این پست میخواهیم با ساختار این شبکه عصبی و نقش هر لایه آن در حل مسئله را بررسی کنیم.


☑️مباحثی که در این پست بررسی میکنیم: 
◻️مسئله XOR و خواب زمستانی هوش مصنوعی
◻️مسئله غیرخطی و پرسپترون تک لایه
◻️قضیه کاور
◻️ شبکه عصبی پرسپترون چندلایه
◻️ نقش لایه ها در پرسپترون چند لایه
    ▪️ لایه ورودی
    ▪️ لایه‌های پنهان
    ▪️ لایه خروجی
◻️ بررسی یک سری سوالات رایج

🔘 جزئیات بیشتر 👇
https://onlinebme.com/multilayer-perceptron-neural-network-for-nonlinear-data/
🏢آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍7
Forwarded from Onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️

🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆


برنامه‌نویسی متلب

🔲 اصول برنامه‌نویسی در متلب (رایگان)
▪️
مدت دوره: 11 ساعت
🔘 Link


برنامه‌نویسی پایتون 

⚪️ فصل 1: اصول برنامه‌نویسی پایتون 
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link


شناسایی الگو و یادگیری ماشین

⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیاده‌سازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
 
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتم‌های کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7:  الگوریتم‌های انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتم‌های خوشه‌بندی
◽️مدت دوره: 13 ساعت
🔘 Link


شبکه‌های عصبی

⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️
مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️
مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️
مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکه‌های عمیق در بینایی ماشین
◽️
مدت دوره: 16 ساعت
🔘 Link


پردازش سیگنال مغزی

⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️
مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️
مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️
مدت دوره: 21 ساعت
🔘 Link
⚪️ پیاده‌سازی مقاله CSSP (BCI مبتنی بر MI)
◽️
مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیاده‌سازی مقاله RCSP (BCI مبتنی بر MI)
◽️
مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️
مدت دوره: 8 ساعت
🔘 Link


دوره جامع پردازش تصویر

⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
👍6🔥5🙏2
خواندن و پردازش داده ی EEG فرمت .gdf با استفاده از پکیج MNE-Python

#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓21 دی 1402

✍️فرمت داده‌ی General Data Format (GDF) برای سیگنال‌های پزشکی یک فرمت فایل داده‌ی پزشکی و علمی است. هدف GDF ترکیب و ادغام بهترین ویژگی‌های همه‌ی فرمت‌های فایل بیوسیگنال در یک فرمت فایل واحد است. در این مقاله بررسی می‌کنیم که چطور می‌توان داده‌های EEG یا MEG فرمت .gdf را با پکیج MNE پایتون خواند و پردازش کرد.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/gdf-file-format-in-mne-python/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍9
Onlinebme
Pytorch and Neural Networks#Project04.pdf
Pytorch and Neural Networks#Project05.pdf
1.3 MB
دوره پایتورچ
🔷  فصل پنجم: شبکه عصبی MLP
🔘▪️ پروژه عملی: سری پنجم
◼️Cost functions  
   🔻MSE
   🔺️MAE
   🔻Huber 
   🔺Hinge 
   🔻Cross-Entropy 
   🔺Binary Cross-Entropy
▫️KL Divergence
@Onlinebme
👍4🔥3
Onlinebme
شبکه عصبی پرسپترون چند لایه و مسائل غیرخطی 👨‍💻محمد نوری زاده چرلو 19 دی 1402 #PyTorch شبکه عصبی پرسپترون چندلایه از سه نوع لایه ورودی، پنهان و خروجی تشکیل شده است. از قانون یادگیری پس انتشار خطا برای تنظیم وزنهای سیناپسی خود استفاده می‌کند و میتواند در…
تابع هزینه cross entropy و تفاوت آن با مربعات خطا
🧑‍💻محمد نوری زاده چرلو
🗓 25 دی 1402
#PyTorch

تابع هزینه یک تابع ریاضیاتی است که عملکرد شبکه عصبی را در انجام یک تسک خاص اندازه گیری می‌کند. توابع هزینه نقش اساسی در یادگیری شبکه های عصبی دارند و به شبکه های عصبی کمک می‌کنند در راستای هدف خاصی وزنهای خود را تنظیم بکنند. توابع هزینه cross-entropy و مربعات خطا معروفترین توابع هزینه در مسائل طبقه بندی و رگرسیون هستند. در این پست میخواهیم با هر کدام از این توابع هزینه آشنا شویم. و علت ترجیح cross-entropy  به MSE در مسائل طبقه بندی را با یک مثال ساده بررسی کنیم.

 ☑️مباحثی که در این پست بررسی میکنیم: 
◻️نقش توابع هزینه
◻️تابع هزینه MSE
◻️تابع هزینه Cross-Entropy
◻️ تابع هزینه مناسب برای مسائل رگرسیون
◻️ تابع هزینه مناسب برای مسائل طبقه‌بندی
◻️ بررسی یک سری سوالات رایج

🔘 جزئیات بیشتر 👇
https://onlinebme.com/cross-entropy-loss-function-in-machine-learning

🏢آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
9👍3
مقدمه‌ای بر شبکه‌های مولد تخاصمی (GANs)
👩‍💻هما کاشفی امیری
🗓28 دی 1402

شبکه‌های GAN حوزه‌ای مهیج و به سرعت در حال تغییر هستند که نوید مدل‌های مولد با قابلیت بالا را می‌دهند. برای مثال می‌توانند نمونه‌های واقعی در طیف وسیعی از مسائل تولید کنند، مانند تبدیل تصاویر تابستان به زمستان، تبدیل تصاویر روز به شب و یا تولید تصاویری از چهره‌ی انسان که هیچ کس غیرواقعی بودن آنها را متوجه نمی‌شود. در این مقاله‌، معرفی اولیه‌ای از شبکه‌های مولد تخاصمی یا GANها را ارائه خواهیم کرد.


⭕️ جزئیات بیشتر👇
https://onlinebme.com/generative-adversarial-networks/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
7
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون

بخش اول: مباحث پایه و عمومی

  🔹 نصب پکیج MNE_Python
  🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)
  🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها
  🔹 پیش پردازش سیگنال
  🔹 تحلیل Time-Frequency سیگنال
  🔹 تجسم سازی سیگنال‌ها و نمایش نتایج
  🔹 انجام چندین پروژه ی عملی با الگوریتم های یادگیری ماشین

بخش دوم: انجام پروژه با شبکه‌های یادگیری عمیق

  🔸پروژه ی تشخیص بیماری صرع از روی سیگنال های EEG با الگوریتم های یادگیری عمیق
  🔸پروژه ی کلاسبندی سیگنال های EEG تصور حرکتی با الگوریتم های یادگیری عمیق (CNN)

  🔸و پروژه های دیگر


🔻نوع دوره: آنلاین همراه با ضبط ویدیوی جلسات
▪️مدت دوره: حدودا 30 ساعت

👩‍💻مدرس: هما کاشفی امیری

جهت ثبت نام به آیدی زیر پیام دهید:
آیدی تلگرام: @mne_python_admin

#python  #MNE_Python #EEG

@Onlinebme
👍19👎1🙏1
Onlinebme pinned a photo
Onlinebme
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون بخش اول: مباحث پایه و عمومی   🔹 نصب پکیج MNE_Python   🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)   🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها   🔹 پیش پردازش سیگنال…
MNE_PYTHON Course.pdf
1.1 MB
دوره‌ی تخصصی MNE-Python
🔷  فصل اول: مبانی سیگنال EEG
    🔹ریتم‌های سیگنال EEG
    🔹نویز و آرتیفکت
   🔹 پارادایم‌های ثبت
   🔹فیلترینگ
🔷  فصل دوم: آموزش MNE-Python
    🔹نصب
    🔹لود کردن دیتاهای EEG
   
      🔸 gdf,.fif,.mat,.csv
    🔹عملیات مقدماتی
        🔸متدهای Inplace
        🔸کار با موقعیت سنسورها
    🔹کار با داده‌ی پیوسته
       🔸ساختار داده Raw
       🔸کار با eventها
       🔸نمایش داده
    🔹پیش پردازش
       🔸شناسایی آرتیفکت
       🔸کار با bad channels
       🔸فیلترینگ
       🔸اعمال ICA
       🔸تنظیم رفرنس
    🔹جداسازی داده پیوسته
      🔸تجسم سازی Epoch
      🔸تبدیل Epochs به دیتافریم
    🔹تحلیل زمان-فرکانس
      🔸 EpochsSpectrum
🔘 پروژه: کلاسبندی EEG با یادگیری ماشین
🔷فصل سوم: انجام پروژه با شبکه‌های عمیق
     🔸تشخیص بیماری صرع
     🔸کلاسبندی با CNN
     🔸پیاده سازی مقاله
@Onlinebme
❤‍🔥112
Onlinebme
Pytorch and Neural Networks#Project05.pdf
Pytorch and Neural Networks#Project06.pdf
607.5 KB
دوره پایتورچ
🔷  فصل ششم: روش‌های بهینه‌سازی
🔘▪️ پروژه عملی: سری ششم
◼️Optimizers   
   🔻SGD
   🔺️SGD+ momentum
   🔻SGD+Nesterov momentum
   🔺AdaGrad 
   🔻RMSprop 
   🔺AdaDelta
   🔻Adam 
   🔺Nadam
   ▫️Classification-Regression

@Onlinebme
7👍2
حاشیه‌نویسی سیگنال پیوسته با استفاده از پکیج MNE پایتون

#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓12 بهمن 1402

✍️با استفاده از پکیج MNE پایتون می‌توانیم سیگنال پیوسته را نشانه‌گذاری یا به اصطلاح حاشیه‌نویسی کنیم و همچنین از این حاشیه‌نویسی‌ها در مراحل بعدی پردازش استفاده کنیم. در این مقاله، روند انجام آن را توضیح می‌دهیم.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/raw-signal-annotation-using-mne-oython/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍9
Onlinebme
Pytorch and Neural Networks#Project06.pdf
Pytorch and Neural Networks#Project07.pdf
1.2 MB
دوره پایتورچ
🔷  فصل هفتم:
پیاده‌سازی شبکه‌های عصبی در پایتورچ
🔘 پروژه عملی: سری هفتم
◼️autograd    
◼️torch.optim
◼️torch.nn
◼️torch.nn.Module
◼️torch.nn.functional


@Onlinebme
8👍2
کتابخانه‌های ضروری مکمل کار با پکیج MNE پایتون

👩‍💻هما کاشفی امیری
🗓۲۶ بهمن ۱۴۰۲

به منظور کار با پکیج MNE پایتون، شناخت و یادگیری چند مورد از کتابخانه‌های پایتون ضروری است. این کتابخانه در خواندن دیتاست‌هایی مثل EEG، ذخیره سازی و جداسازی و تقسیم دیتاست به بخش‌های آموزش و آزمایش و همچنین استفاده از تکنیک‌های آموزش مدل مانند k-fold cross validation و … ضروری هستند. این کتابخانه‌ها عبارتند از: numpy، pandas و matplotlib و scikit-learn. در این مقاله به بررسی این کتابخانه‌های مهم پایتون و نقش آنها در کار با پکیج mne می پردازیم.

⭕️ جزئیات بیشتر👇

https://onlinebme.com/necessary-python-libraries-for-working-with-mne/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍8
2025/10/18 08:24:01
Back to Top
HTML Embed Code: