This media is not supported in your browser
VIEW IN TELEGRAM
Плейлист из 30 видео на YouTube для изучения основ машинного обучения с нуля
Если вы не знаете, с чего начать изучение машинного обучения, этот список под названием «Machine Learning: Teach by Doing» — отличный выбор, чтобы освоить как теорию, так и практическое программирование.
👉 @DataSciencegx
Если вы не знаете, с чего начать изучение машинного обучения, этот список под названием «Machine Learning: Teach by Doing» — отличный выбор, чтобы освоить как теорию, так и практическое программирование.
1. Введение в машинное обучение — Teach by Doing:
https://lnkd.in/gqN2PMX5
2. Что такое машинное обучение? История машинного обучения:
https://lnkd.in/gvpNSAKh
3. Типы моделей машинного обучения:
https://lnkd.in/gSy2mChM
4. 6 этапов любого ML-проекта:
https://lnkd.in/ggCGchPQ
5. Установка Python и VSCode, запуск первого кода:
https://lnkd.in/gyic7J7b
6. Линейные классификаторы. Часть 1:
https://lnkd.in/gYdfD97D
7. Линейные классификаторы. Часть 2:
https://lnkd.in/gac_z-G8
8. Jupyter Notebook, Numpy и Scikit-Learn:
https://lnkd.in/gWRaC_tB
9. Запуск алгоритма случайного линейного классификатора на Python:
https://lnkd.in/g5HacbFC
10. Самая первая ML-модель — перцептрон:
https://lnkd.in/gpce6uFt
11. Реализация перцептрона на Python:
https://lnkd.in/gmz-XjNK
12. Теорема сходимости перцептрона:
https://lnkd.in/gmz-XjNK
13. Магия признаков в машинном обучении:
https://lnkd.in/gCeDRb3g
14. One-hot encoding (одноразрядное кодирование):
https://lnkd.in/g3WfRQGQ
15. Логистическая регрессия. Часть 1:
https://lnkd.in/gTgZAAZn
16. Функция потерь — кросс-энтропия:
https://lnkd.in/g3Ywg_2p
17. Как работает градиентный спуск:
https://lnkd.in/gKBAsazF
18. Логистическая регрессия с нуля на Python:
https://lnkd.in/g8iZh27P
19. Введение в регуляризацию:
https://lnkd.in/gjM9pVw2
20. Реализация регуляризации на Python:
https://lnkd.in/gRnSK4v4
21. Введение в линейную регрессию:
https://lnkd.in/gPYtSPJ9
22. Пошаговая реализация метода наименьших квадратов (OLS):
https://lnkd.in/gnWQdgNy
23. Основы и интуиция гребневой регрессии (Ridge Regression):
https://lnkd.in/gE5M-CSM
24. Резюме по регрессии для собеседований:
https://lnkd.in/gNBWzzWv
25. Архитектура нейронной сети за 30 минут:
https://lnkd.in/g7qSrkxG
26. Интуиция обратного распространения ошибки (Backpropagation):
https://lnkd.in/gAmBARHm
27. Функции активации в нейронных сетях:
https://lnkd.in/gqrC3zDP
28. Моментум в градиентном спуске:
https://lnkd.in/g3M4qhbP
29. Практическое обучение нейросети на Python:
https://lnkd.in/gz-fTBxs
30. Введение в сверточные нейронные сети (CNN):
https://lnkd.in/gpmuBm3j
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15
Отличное приложение на основе ИИ начинается с выбора подходящего типа эмбеддингов.
Вот 6 типов эмбеддингов и случаи, когда стоит их использовать:
• Sparse embeddings: https://weaviate.io/developers/weaviate/search/bm25
• Dense embeddings: https://weaviate.io/developers/weaviate/search/similarity
• Quantized embeddings: https://weaviate.io/developers/weaviate/concepts/vector-quantization
• Binary embeddings: https://weaviate.io/developers/weaviate/concepts/vector-quantization#binary-quantization
• Variable dimensions: https://weaviate.io/blog/openais-matryoshka-embeddings-in-weaviate
• Multi-vector embeddings: https://weaviate.io/developers/weaviate/tutorials/multi-vector-embeddings
👉 @DataSciencegx
Вот 6 типов эмбеддингов и случаи, когда стоит их использовать:
• Sparse embeddings: https://weaviate.io/developers/weaviate/search/bm25
• Dense embeddings: https://weaviate.io/developers/weaviate/search/similarity
• Quantized embeddings: https://weaviate.io/developers/weaviate/concepts/vector-quantization
• Binary embeddings: https://weaviate.io/developers/weaviate/concepts/vector-quantization#binary-quantization
• Variable dimensions: https://weaviate.io/blog/openais-matryoshka-embeddings-in-weaviate
• Multi-vector embeddings: https://weaviate.io/developers/weaviate/tutorials/multi-vector-embeddings
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤3
This media is not supported in your browser
VIEW IN TELEGRAM
Google представил Agent2Agent (A2A)
Протокол для общения ИИ-агентов между собой, независимо от платформы или фреймворка. Использует технологии HTTP, SSE и JSON-RPC. Подробнее тут
Agent2Agent Protocol vs. Model Context Protocol, четкое объяснение (с визуализацией):
— Протокол Agent2Agent позволяет AI-агентам подключаться к другим агентам.
— Протокол Model Context позволяет AI-агентам подключаться к инструментам и API.
Оба протокола являются open-source и не конкурируют друг с другом
👉 @DataSciencegx
Протокол для общения ИИ-агентов между собой, независимо от платформы или фреймворка. Использует технологии HTTP, SSE и JSON-RPC. Подробнее тут
Agent2Agent Protocol vs. Model Context Protocol, четкое объяснение (с визуализацией):
— Протокол Agent2Agent позволяет AI-агентам подключаться к другим агентам.
— Протокол Model Context позволяет AI-агентам подключаться к инструментам и API.
Оба протокола являются open-source и не конкурируют друг с другом
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3
Forwarded from Python Portal
NVIDIA завезла нативную поддержку Python в CUDA
Теперь можно напрямую использовать ускорение на GPU прямо из Python — что сильно упрощает работу над проектами в сфере ИИ, машинного обучения и научных вычислений. Никаких обёрток, костылей и танцев с C/C++.
— CUDA Core — переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей
— cuPyNumeric — прокачанная версия NumPy, работающая на GPU
— NVMath — поддержка линейной алгебры, совместима с хостом и устройством
— Добавлены инструменты для профилирования и анализа кода
— Новый подход к параллельным вычислениям — CuTile. Абстракция не на уровне потоков, а на уровне массивов и тайлов
Посмотреть презентацию можно тут✌️
👉 @PythonPortal
Теперь можно напрямую использовать ускорение на GPU прямо из Python — что сильно упрощает работу над проектами в сфере ИИ, машинного обучения и научных вычислений. Никаких обёрток, костылей и танцев с C/C++.
— CUDA Core — переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей
— cuPyNumeric — прокачанная версия NumPy, работающая на GPU
— NVMath — поддержка линейной алгебры, совместима с хостом и устройством
— Добавлены инструменты для профилирования и анализа кода
— Новый подход к параллельным вычислениям — CuTile. Абстракция не на уровне потоков, а на уровне массивов и тайлов
Посмотреть презентацию можно тут
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14❤5
Если вы только начинаете заниматься ML/DL и переживаете, что придётся потратить недели на подтягивание математики, поверьте — этого видео вам достаточно.
Это видео длится 5 часов, и этого вполне достаточно, чтобы начать.
Не усложняйте
https://www.youtube.com/watch?v=Ixl3nykKG9M
👉 @DataSciencegx
Это видео длится 5 часов, и этого вполне достаточно, чтобы начать.
Не усложняйте
https://www.youtube.com/watch?v=Ixl3nykKG9M
Please open Telegram to view this post
VIEW IN TELEGRAM
❤19👍2🔥2
Сделайте sentence transformers в 50 раз меньше и в 500 раз быстрее
Model2Vec преобразует любой sentence transformer в компактную статическую модель с минимальной потерей качества. Кроме того, он обеспечивает мгновенный векторный поиск по миллионам документов без предварительной индексации.
Полностью с открытым исходным кодом
https://github.com/MinishLab/model2vec/tree/main
👉 @DataSciencegx
Model2Vec преобразует любой sentence transformer в компактную статическую модель с минимальной потерей качества. Кроме того, он обеспечивает мгновенный векторный поиск по миллионам документов без предварительной индексации.
Полностью с открытым исходным кодом
https://github.com/MinishLab/model2vec/tree/main
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍2
Полный краш-курс по MCP для Python-разработчиков
– Что такое MCP и как он устроен
– Как поднять свой MCP-сервер
– Подключение Python-приложений к MCP
– Интеграция LLM-моделей с MCP
– MCP против function calling
– Деплой в Docker
– Управление жизненным циклом
Гайд для тех, кто хочет строить AI-системы на базе MCP и выйти за рамки базовых туториалов:
https://www.youtube.com/watch?v=5xqFjh56AwM
👉 @DataSciencegx
– Что такое MCP и как он устроен
– Как поднять свой MCP-сервер
– Подключение Python-приложений к MCP
– Интеграция LLM-моделей с MCP
– MCP против function calling
– Деплой в Docker
– Управление жизненным циклом
Гайд для тех, кто хочет строить AI-системы на базе MCP и выйти за рамки базовых туториалов:
https://www.youtube.com/watch?v=5xqFjh56AwM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍3
Открытый репозиторий по Data Science для изучения и применения в решении реальных задач.
Это упрощённый путь для начала изучения Data Science.
Всё необходимое вы найдёте здесь: https://github.com/academic/awesome-datascience
👉 @DataSciencegx
Это упрощённый путь для начала изучения Data Science.
Всё необходимое вы найдёте здесь: https://github.com/academic/awesome-datascience
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13🔥1
Подключите любую LLM к любому MCP-серверу
MCP-Use — это open-source способ подключить любую LLM к любому MCP-серверу и создавать кастомных агентов с доступом к инструментам без использования проприетарных решений или клиентских приложений.
Создавайте полностью локальные MCP-клиенты: https://github.com/pietrozullo/mcp-use
👉 @DataSciencegx
MCP-Use — это open-source способ подключить любую LLM к любому MCP-серверу и создавать кастомных агентов с доступом к инструментам без использования проприетарных решений или клиентских приложений.
Создавайте полностью локальные MCP-клиенты: https://github.com/pietrozullo/mcp-use
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2
Стэнфорд выкатил свежий курс по LLM — CS336: Language Modeling from Scratch
Курс с фокусом на практику: вся теория по LLM раскрывается через создание собственной модели. Ты изучаешь всё end-to-end — от обработки данных и архитектуры трансформеров до RL и эвала
Ведёт курс Перси Лианг — профессор Стэнфорда и сооснователь TogetherAI.
Курс прямо сейчас идёт в Стэнфорде, и лекции заливаются по ходу — контент свежий, как только из печи
Первые лекции здесь, а домашка и ноутбуки — тут.
👉 @DataSciencegx
Курс с фокусом на практику: вся теория по LLM раскрывается через создание собственной модели. Ты изучаешь всё end-to-end — от обработки данных и архитектуры трансформеров до RL и эвала
Ведёт курс Перси Лианг — профессор Стэнфорда и сооснователь TogetherAI.
Курс прямо сейчас идёт в Стэнфорде, и лекции заливаются по ходу — контент свежий, как только из печи
Первые лекции здесь, а домашка и ноутбуки — тут.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍4❤2
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3🔥3
Эта лекция о больших языковых моделях (LLM) обязательна к просмотру для инженеров в области ИИ.
Полуторачасовая лекция охватывает: токенизацию, законы масштабирования, дообучение, оценку, оптимизацию, вызовы, затраты и многое другое.
От Стэнфорда, около 1 млн просмотров
https://www.youtube.com/watch?v=9vM4p9NN0Ts
👉 @DataSciencegx
Полуторачасовая лекция охватывает: токенизацию, законы масштабирования, дообучение, оценку, оптимизацию, вызовы, затраты и многое другое.
От Стэнфорда, около 1 млн просмотров
https://www.youtube.com/watch?v=9vM4p9NN0Ts
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍3🔥2
Этот репозиторий на GitHub — настоящая находка для ML-специалистов
Репозиторий Kaggle Solutions собирает решения и идеи от лучших участников прошлых соревнований Kaggle. Список регулярно обновляется после каждого соревнования.
Он охватывает интервью по машинному обучению, лекции и решения
https://github.com/faridrashidi/kaggle-solutions
👉 @DataSciencegx
Репозиторий Kaggle Solutions собирает решения и идеи от лучших участников прошлых соревнований Kaggle. Список регулярно обновляется после каждого соревнования.
Он охватывает интервью по машинному обучению, лекции и решения
https://github.com/faridrashidi/kaggle-solutions
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍2
Вот как запустить модель случайного леса на GPU
Hummingbird компилирует обученные традиционные модели машинного обучения в тензорные вычисления. Это позволяет запускать их на аппаратных ускорителях, таких как GPU, для более быстрой инференции.
Инференция в 40 раз быстрее всего за 2 строки кода
👉 @DataSciencegx
Hummingbird компилирует обученные традиционные модели машинного обучения в тензорные вычисления. Это позволяет запускать их на аппаратных ускорителях, таких как GPU, для более быстрой инференции.
Инференция в 40 раз быстрее всего за 2 строки кода
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6
Forwarded from IT Portal
Топ на выходные: 3 сайта с задачками для прокачки ML-навыков
Линейная алгебра, machine и deep learning — разный уровень сложности: задачи отсортированы по Easy, Mediums и Hard. Автоматическая проверка и подсказки в комплекте
Deep-ML, Tensorgym и ML cекция на NeetCode — не благодарите
@IT_Portal
Линейная алгебра, machine и deep learning — разный уровень сложности: задачи отсортированы по Easy, Mediums и Hard. Автоматическая проверка и подсказки в комплекте
Deep-ML, Tensorgym и ML cекция на NeetCode — не благодарите
@IT_Portal
❤11👍4🔥3
Внутренности PyTorch
Подробное руководство о том, как разобраться в кодовой базе PyTorch и начать вносить вклад в её развитие
https://blog.ezyang.com/2019/05/pytorch-internals/
👉 @DataSciencegx
Подробное руководство о том, как разобраться в кодовой базе PyTorch и начать вносить вклад в её развитие
https://blog.ezyang.com/2019/05/pytorch-internals/
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍2
Один из лучших гайдов по выборке в больших языковых моделях (LLM Sampling) вышел, написанный создателем движка инференса Aphrodite (этот парень реально обожает сэмплеры)
https://rentry.org/samplers
👉 @DataSciencegx
https://rentry.org/samplers
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1
Создание трансформера с нуля
https://github.com/DorsaRoh/Machine-Learning
Реализация и подробное объяснение трансформера, с расчётом на полное отсутствие предварительных знаний.
Приятного изучения✌️
👉 @DataSciencegx
https://github.com/DorsaRoh/Machine-Learning
Реализация и подробное объяснение трансформера, с расчётом на полное отсутствие предварительных знаний.
Приятного изучения
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - DorsaRoh/Machine-Learning: ML from scratch
ML from scratch. Contribute to DorsaRoh/Machine-Learning development by creating an account on GitHub.
❤5👍3
Эти лекции были записаны 10 лет назад, но до сих пор, вероятно, остаются одними из лучших по следующим темам — теория информации и распознавание образов.
Основаны на книге Information Theory, Inference, and Learning Algorithm
https://www.youtube.com/playlist?list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6
👉 @DataSciencegx
Основаны на книге Information Theory, Inference, and Learning Algorithm
https://www.youtube.com/playlist?list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤5