Warning: Undefined array key 0 in /var/www/tgoop/function.php on line 65

Warning: Trying to access array offset on value of type null in /var/www/tgoop/function.php on line 65
57 - Telegram Web
Telegram Web
⚡️ Awesome Machine Learning — фреймворки и библиотеки для ML

Репозиторий содержащий подборку полезных ресурсов, библиотек и инструментов для изучения и работы с машинным обучением (ML).

🔜 Ссылка на репозиторий Awesome Machine Learning

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍103
🔢 Калькулятор для расчёта необходимого размера выборки для A/B тестов

Реддитор поделился сайтом, который сделал, чтобы облегчить себе жизнь.

Калькулятор может:
работать с разными пропорциями распределения групп (например, 20/80),
поддерживать более двух тестируемых групп помимо,
выбирать между односторонним и двусторонним статистическим тестом.

🔜 Ссылка на калькулятор

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11
This media is not supported in your browser
VIEW IN TELEGRAM
Профессор Том Йет создал Google Sheets, в котором предлагает вам самостоятельно вычислить архитектуру Transformer

В таблице представлены все матрицы, составляющие систему, и ваша задача — вычислить результирующие матрицы. Ответы, указанные прописными буквами, можно скрыть для самопроверки.

Также автор делится полезными материалами для лучшего понимания архитектуры Transformer.

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍2
Грокаем машинное обучение

Автор: Серрано Луис
Год: 2024

⬇️ Скачать книгу

👉 @DataSciencegx | #книги
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍1
Deep Learning на пальцах

Бесплатный курс по глубокому обучению от исследователя MIT Семёна Козлова. Он читается для магистрантов НГУ и студентов CS центра Новосибирска

Темы включают основы Python, numpy, работу с нейронными сетями, PyTorch, а также вводные концепции в NLP, компьютерное зрение, распознавание речи и обучение с подкреплением

🔜 Ссылка на материалы

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86
Illustrated Machine Learning

Этот сайт предоставляет визуальные объяснения различных концепций машинного обучения. Здесь можно найти иллюстрации по таким темам, как:

Введение в машинное обучение
Линейная регрессия
Логистическая регрессия
Деревья решений
Бэггинг и бустинг
Кластеризация
Нейронные сети и глубокое обучение и др.

🔜 Ссылка на сайт

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
🏆5👍41🔥1
Data Science Interview Questions & Exercises

Это подборка вопросов и ответов для собеседования на позицию дата-сайентиста.

Охватывает темы:
основы машинного обучения;
глубокое обучение и нейросети;
статистика и теория верояностей;
А/Б-тестирование;
NLP.

🔜 Ссылка

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍81🏆1
Изучаем основы Python. Практический курс для дата-аналитиков

Автор: П.И. Меликов
Год: 2023

⬇️ Скачать книгу

👉 @DataSciencegx | #книги
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍6🤯1🏆1
latexify — библиотека для красивого вывода формул

Вот основные функции:

компилирует код Python или AST в формат LaTeX
предоставляет классы для IPython для красивого отображения формул.

🔜 Ссылка на репозиторий

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍5
Краткий свод концепций Tensor Flow

архитектуру TensorFlow: устройство и базовые концепты;
типы данных и форматы тензоров в TensorFlow;
оптимизацию и обучение моделей;
обучение и распределённое вычисление: стратегии и параллелизация;
работу с данными и их подготовку: Dataset API и трансформации данных;
сохранение и развёртывание моделей.

🔜 Читать статью

👉 @DataSciencegx | #cтатья
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
This media is not supported in your browser
VIEW IN TELEGRAM
PandasAI — это инструмент для анализа данных, позволяющий работать с ними через запросы на естественном языке

Где использовать:
в Jupyter ноутбуках,
Streamlit-приложениях,
в виде REST API.

Как использовать: Просто формулировать вопросы к данным на естественном языке.

🔜 Демо в Google Colab
🔜 Репозиторий проекта

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍51
This media is not supported in your browser
VIEW IN TELEGRAM
Как загружать веса моделей при ограниченных ресурсах?

Если объём памяти на вашем GPU ограничен, но нужно сохранить модель с помощью команды torch.save(model.state_dict(), 'model.pth') и продолжить её обучение в будущем, это вполне решаемая задача.

👉 В этом ноутбуке вы найдёте полезные советы и рекомендации, которые помогут справиться с этой проблемой.

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113
This media is not supported in your browser
VIEW IN TELEGRAM
Шпаргалка по методам кодирования категориальных признаков

👉 @DataSciencegx
Please open Telegram to view this post
VIEW IN TELEGRAM
👍116🌭1
cookbook.pdf
642.4 KB
Гайд по тензорам

Эта компактная книга на 50 страниц подробно освещает все аспекты, связанные с тензорами

Тензор — это универсальное понятие, обозначающее матрицы с любым числом измерений. К тензорам относятся как скаляры (тензоры нулевого ранга), так и векторы (тензоры первого ранга) и матрицы (тензоры второго ранга).


🔜 Ссылка на сайт The Tensor Cookbook

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
SQL за 6 недель для дата-сайентистов

Опытный дата-сайентист с семилетним стажем создал подробный план изучения SQL, представленный в формате репозитория на GitHub. Каждый этап обучения включает полезные ссылки на обучающие материалы.

Вот как выглядит 6-недельная программа:
🔸 Неделя 1: Основы SQL. Научимся извлекать данные из баз данных.
🔸 Неделя 2: Группировка данных с помощью GROUP BY.
🔸 Неделя 3: Разбираем типы JOIN и их применение.
🔸 Неделя 4: Погружаемся в оконные функции.
🔸 Неделя 5: Изучаем CTE и подзапросы.
🔸 Неделя 6: Создаём собственный проект, чтобы закрепить знания.

👉 Дорожная карта на GitHub

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74
Проектирование систем машинного обучения

Автор: Чип Хьюен
Год: 2023

⬇️ Скачать книгу

👉 @DataSciencegx | #книги
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Советы от эксперта для тех, кто хочет развиваться в области DS и ML

На канале школы MLinside вышел подкаст с Алексеем Толстиковым, руководителем ШАД Яндекса.

Что внутри:

Какие навыки важны для работы в Data Science и Machine Learning
Почему одних технических знаний может не хватить для того, чтобы быть востребованным специалистом
Роль соревнований и междисциплинарности в развитии карьеры
Как поступить в ШАД и совмещать учёбу с работой

🔜 Ссылка: тык

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11😁4
This media is not supported in your browser
VIEW IN TELEGRAM
Scientific Computing with Python — бесплатный интерактивный курс

Это своего рода учебник от Freecodecamp. Его цель — дать обучающимся навыки анализа и обработки данных с помощью Python. Учебник содержит следующие темы:

работа со строками;
List Comprehension;
основы дизайна алгоритмов;
структуры данных;
классы и объекты.

Ссылка: тык

👉 @DataSciencegx | #курсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥1
Гайд по техникам RAG

В репозитории собраны материалы по различным способам реализации Retrieval Augmented Generation (RAG). Вот некоторые методы:

🔸Простой RAG с LangChain;
🔸RAG с валидацией данных;
🔸RAG с трансформацией запроса;
🔸Relevant Segment Extraction (RSE);
🔸Сжатие контекста из документов.

👉 Ссылка на репозиторий

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍5
Media is too big
VIEW IN TELEGRAM
Gaze-LLE

Это модель позволяющая предсказывать куда направлен взгляд человека на видео.

Метод поддерживает многопользовательскую инференцию, обрабатывая пакеты изображений с указанием ограничивающих рамок на головы людей.

Включены функции визуализации тепловых карт и скрипты для оценки на наборах данных GazeFollow и VideoAttentionTarget, а модели можно легко интегрировать с PyTorch Hub.

👉 https://github.com/fkryan/gazelle

👉 @DataSciencegx | #ресурсы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15
2025/07/08 21:21:19
Back to Top
HTML Embed Code: