Telegram Web
๐Ÿ”ฅ Trending Repository: xiaomusic

๐Ÿ“ Description: ไฝฟ็”จๅฐ็ˆฑ้Ÿณ็ฎฑๆ’ญๆ”พ้Ÿณไน๏ผŒ้Ÿณไนไฝฟ็”จ yt-dlp ไธ‹่ฝฝใ€‚

๐Ÿ”— Repository URL: https://github.com/hanxi/xiaomusic

๐ŸŒ Website: http://xdocs.hanxi.cc/

๐Ÿ“– Readme: https://github.com/hanxi/xiaomusic#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 6.4K stars
๐Ÿ‘€ Watchers: 22
๐Ÿด Forks: 637 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#python #music #docker #vue #docker_compose #xiaomi #pdm #xiaoai #xiaoai_speaker #xiaomusic


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: lingo.dev

๐Ÿ“ Description: โšก Lingo.dev - open-source, AI-powered i18n toolkit for instant localization with LLMs. Bring your own LLM or use Lingo.dev Localization Engine. Join discord:

๐Ÿ”— Repository URL: https://github.com/lingodotdev/lingo.dev

๐ŸŒ Website: https://lingo.dev/go/discord

๐Ÿ“– Readme: https://github.com/lingodotdev/lingo.dev#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 3.9K stars
๐Ÿ‘€ Watchers: 8
๐Ÿด Forks: 599 forks

๐Ÿ’ป Programming Languages: TypeScript - JavaScript - PHP - HTML - MDX - EJS

๐Ÿท๏ธ Related Topics:
#react #javascript #i18n #typescript #react_native


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
โค1
#YOLOv8 #ComputerVision #HomeSecurity #ObjectTracking #AI #Python

Lesson: Tracking Suspicious Individuals Near a Home at Night with YOLOv8

This tutorial demonstrates how to build an advanced security system using YOLOv8's object tracking capabilities. The system will detect people in a night-time video feed, track their movements, and trigger an alert if a person loiters for too long within a predefined "alert zone" (e.g., a driveway or porch).

---

#Step 1: Project Setup and Dependencies

We will use ultralytics for YOLOv8 and its built-in tracker, opencv-python for video processing, and numpy for defining our security zone.

pip install ultralytics opencv-python numpy

Create a Python script (e.g., security_tracker.py) and import the necessary libraries. We'll also use defaultdict to easily manage timers for each tracked person.

import cv2
import numpy as np
from ultralytics import YOLO
from collections import defaultdict
import time

# Hashtags: #Setup #Python #OpenCV #YOLOv8


---

#Step 2: Model Click Me Load More and Zone Configuration

We will load a standard YOLOv8 model capable of detecting 'person'. The key is to define a polygon representing the area we want to monitor. We will also set a time threshold to define "loitering". You will need a video file of your target area, for example, night_security_footage.mp4.

# Load the YOLOv8 model
model = YOLO('yolov8n.pt')

# Path to your night-time video file
VIDEO_PATH = 'night_security_footage.mp4'

# Define the polygon for the alert zone.
# IMPORTANT: You MUST adjust these [x, y] coordinates to fit your video's perspective.
# This example defines a rectangular area for a driveway.
ALERT_ZONE_POLYGON = np.array([
[100, 500], [800, 500], [850, 250], [50, 250]
], np.int32)

# Time in seconds a person can be in the zone before an alert is triggered
LOITERING_THRESHOLD_SECONDS = 5.0

# Dictionaries to store tracking data
# Stores the time when a tracked object first enters the zone
loitering_timers = {}
# Stores the IDs of individuals who have triggered an alert
alert_triggered_ids = set()

# Hashtags: #Configuration #AIModel #SecurityZone


---

#Step 3: Main Loop for Tracking and Zone Monitoring

This is the core of the system. We will read the video frame by frame and use YOLOv8's track() function. This function not only detects objects but also assigns a unique ID to each one, allowing us to follow them across frames.

cap = cv2.VideoCapture(VIDEO_PATH)

while cap.isOpened():
success, frame = cap.read()
if not success:
break

# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)

# Get the bounding boxes and track IDs
boxes = results[0].boxes.xywh.cpu()
track_ids = results[0].boxes.id.int().cpu().tolist()

# Visualize the results on the frame
annotated_frame = results[0].plot()

# Draw the alert zone polygon on the frame
cv2.polylines(annotated_frame, [ALERT_ZONE_POLYGON], isClosed=True, color=(0, 255, 255), thickness=2)

# Hashtags: #RealTime #ObjectTracking #VideoProcessing

(Note: The code below should be placed inside the while loop of Step 3)

---

#Step 4: Implementing Loitering Logic and Alerts

Inside the main loop, we'll iterate through each tracked person. We check if their position is inside our alert zone. If it is, we start or update a timer. If the timer exceeds our threshold, we trigger an alert for that person's ID.
# --- Loitering Logic --- (This code continues inside the while loop)

for box, track_id in zip(boxes, track_ids):
x, y, w, h = box
center_point = (int(x), int(y))

# Check if the center of the person is inside the alert zone
is_inside_zone = cv2.pointPolygonTest(ALERT_ZONE_POLYGON, center_point, False) >= 0

if is_inside_zone:
# If person is inside, start or check their timer
if track_id not in loitering_timers:
# First time this person is detected in the zone
loitering_timers[track_id] = time.time()
else:
# Person is still in the zone, check duration
elapsed_time = time.time() - loitering_timers[track_id]

if elapsed_time > LOITERING_THRESHOLD_SECONDS:
# Loitering detected! Trigger alert.
alert_triggered_ids.add(track_id)
else:
# If person leaves the zone, reset their timer
if track_id in loitering_timers:
del loitering_timers[track_id]
if track_id in alert_triggered_ids:
alert_triggered_ids.remove(track_id) # Optional: reset alert when they leave

# Add visual alert text for tracked individuals who triggered the alert
for track_id in alert_triggered_ids:
# This part requires re-iterating through boxes to find the right one to draw on.
# A more optimized way would be to store box coordinates with the track_id.
for box, tid in zip(results[0].boxes.xyxy.cpu(), track_ids):
if tid == track_id:
x1, y1, _, _ = map(int, box)
cv2.putText(annotated_frame, "ALERT: LOITERING!", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
break

# Display the annotated frame
cv2.imshow("Suspicious Activity Tracker", annotated_frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()

# Hashtags: #SecurityAI #AlertSystem #HomeSafety


---

#Step 5: Results and Discussion

When you run the script, you will see your video with:
โ€ข A yellow polygon outlining your defined security zone.
โ€ข Bounding boxes around each person with a unique tracking ID.
โ€ข If a person stays inside the zone for longer than LOITERING_THRESHOLD_SECONDS, a red "ALERT: LOITERING!" message will appear above their bounding box.

Discussion and Ethical Considerations:
Defining "Suspicious": This system does not understand "suspicious behavior." It only follows a simple rule: person + location + time. The interpretation of this as "suspicious" is a human one.
False Positives: The system will trigger an alert for anyone who meets the criteria, including a homeowner, a delivery driver waiting for a signature, or a neighbor stopping to chat. The LOITERING_THRESHOLD_SECONDS must be carefully tuned to balance security with convenience.
Tracking Stability: In low-light conditions, the tracker might lose a person and assign them a new ID when they reappear, resetting the timer. Using a higher-quality camera or a YOLO model fine-tuned on night-time data (e.g., from thermal or infrared cameras) would significantly improve performance.
Bias and Fairness: AI models can be less accurate in identifying individuals from underrepresented groups in their training data. In a security context, this could lead to a higher rate of missed detections or false alarms for certain people, which is a serious ethical issue. This tool should be used to assist human judgment, not replace it.

#ProjectComplete #AIforGood #ResponsibleAI

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
By: @DataScienceN โœจ
#PyQt5 #SQLite #DesktopApp #Pharmacy #Barcode #Python

Lesson: Building a Pharmacy Management System with PyQt5 and Barcode Scanning

This tutorial will guide you through creating a complete desktop application for managing a pharmacy. The system will use a SQLite database for inventory, and a Point of Sale (POS) interface that uses barcode scanning to add drugs to a sale and automatically deducts stock upon completion.

---

#Step 1: Database Setup (database.py)

First, we create a dedicated file to handle all SQLite database operations. This keeps our data logic separate from our UI logic. Create a file named database.py.

import sqlite3

DB_NAME = 'pharmacy.db'

def connect():
return sqlite3.connect(DB_NAME)

def setup_database():
conn = connect()
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS drugs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
barcode TEXT NOT NULL UNIQUE,
quantity INTEGER NOT NULL,
price REAL NOT NULL,
expiry_date TEXT NOT NULL
)
''')
conn.commit()
conn.close()

def add_drug(name, barcode, quantity, price, expiry_date):
conn = connect()
cursor = conn.cursor()
try:
cursor.execute("INSERT INTO drugs (name, barcode, quantity, price, expiry_date) VALUES (?, ?, ?, ?, ?)",
(name, barcode, quantity, price, expiry_date))
conn.commit()
except sqlite3.IntegrityError:
return False # Barcode already exists
finally:
conn.close()
return True

def get_all_drugs():
conn = connect()
cursor = conn.cursor()
cursor.execute("SELECT id, name, barcode, quantity, price, expiry_date FROM drugs ORDER BY name")
drugs = cursor.fetchall()
conn.close()
return drugs

def find_drug_by_barcode(barcode):
conn = connect()
cursor = conn.cursor()
cursor.execute("SELECT id, name, barcode, quantity, price, expiry_date FROM drugs WHERE barcode = ?", (barcode,))
drug = cursor.fetchone()
conn.close()
return drug

def update_drug_quantity(drug_id, sold_quantity):
conn = connect()
cursor = conn.cursor()
cursor.execute("UPDATE drugs SET quantity = quantity - ? WHERE id = ?", (sold_quantity, drug_id))
conn.commit()
conn.close()

# Hashtags: #SQLite #DatabaseDesign #DataPersistence #Python


---

#Step 2: Main Application and Inventory Management UI

Create the main application file, main.py. We will set up the main window with tabs for "Point of Sale" and "Inventory Management". We will fully implement the inventory tab first, allowing users to view and add drugs to the database.
import sys
from PyQt5.QtWidgets import *
from PyQt5.QtCore import QDate
import database as db

class PharmacyApp(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Pharmacy Management System")
self.setGeometry(100, 100, 1200, 700)
db.setup_database()

self.tabs = QTabWidget()
self.setCentralWidget(self.tabs)

self.pos_tab = QWidget()
self.inventory_tab = QWidget()

self.tabs.addTab(self.pos_tab, "Point of Sale")
self.tabs.addTab(self.inventory_tab, "Inventory Management")

self.setup_inventory_ui()
# self.setup_pos_ui() will be done in the next step

self.load_inventory_data()

def setup_inventory_ui(self):
layout = QVBoxLayout()
self.inventory_table = QTableWidget()
self.inventory_table.setColumnCount(6)
self.inventory_table.setHorizontalHeaderLabels(['ID', 'Name', 'Barcode', 'Quantity', 'Price', 'Expiry Date'])
layout.addWidget(self.inventory_table)

form = QFormLayout()
self.drug_name = QLineEdit()
self.drug_barcode = QLineEdit()
self.drug_qty = QSpinBox()
self.drug_qty.setRange(0, 9999)
self.drug_price = QLineEdit()
self.drug_expiry = QDateEdit(QDate.currentDate().addYears(1))
self.drug_expiry.setDisplayFormat("yyyy-MM-dd")

form.addRow("Name:", self.drug_name)
form.addRow("Barcode:", self.drug_barcode)
form.addRow("Quantity:", self.drug_qty)
form.addRow("Price:", self.drug_price)
form.addRow("Expiry Date:", self.drug_expiry)
add_btn = QPushButton("Add Drug to Inventory")
add_btn.clicked.connect(self.add_drug_to_db)

layout.addLayout(form)
layout.addWidget(add_btn)
self.inventory_tab.setLayout(layout)

def load_inventory_data(self):
drugs = db.get_all_drugs()
self.inventory_table.setRowCount(len(drugs))
for row, drug in enumerate(drugs):
for col, data in enumerate(drug):
self.inventory_table.setItem(row, col, QTableWidgetItem(str(data)))

def add_drug_to_db(self):
name = self.drug_name.text()
barcode = self.drug_barcode.text()
qty = self.drug_qty.value()
price = float(self.drug_price.text())
expiry = self.drug_expiry.date().toString("yyyy-MM-dd")

if not all([name, barcode, qty > 0, price > 0]):
QMessageBox.warning(self, "Input Error", "Please fill all fields correctly.")
return

if db.add_drug(name, barcode, qty, price, expiry):
self.load_inventory_data()
else:
QMessageBox.warning(self, "Database Error", "A drug with this barcode already exists.")

# Main execution block at the end of the file
if __name__ == '__main__':
app = QApplication(sys.argv)
window = PharmacyApp()
window.show()
sys.exit(app.exec_())

# Hashtags: #PyQt5 #GUI #CRUD #Inventory


---

#Step 3: Point of Sale (POS) UI and Barcode Handling

Now, let's build the user interface for the sales tab. This will include an input for the barcode, a table for the current sale items (the "cart"), and buttons to finalize or clear the sale. A physical barcode scanner typically emulates a keyboard, entering the numbers and pressing "Enter". We will simulate this with the returnPressed signal on a QLineEdit.

Add these methods to the PharmacyApp class:
# In __init__, call the setup method
self.setup_pos_ui()
self.current_sale_items = {} # Dictionary to store {drug_id: {data, quantity}}

def setup_pos_ui(self):
main_layout = QHBoxLayout()

# Left side: Sale and Barcode input
left_layout = QVBoxLayout()

barcode_group = QGroupBox("Scan Barcode")
barcode_layout = QVBoxLayout()
self.barcode_input = QLineEdit()
self.barcode_input.setPlaceholderText("Scan or type barcode and press Enter...")
self.barcode_input.returnPressed.connect(self.add_item_to_sale)
barcode_layout.addWidget(self.barcode_input)
barcode_group.setLayout(barcode_layout)

self.sales_table = QTableWidget()
self.sales_table.setColumnCount(5)
self.sales_table.setHorizontalHeaderLabels(['ID', 'Name', 'Quantity', 'Unit Price', 'Total Price'])

left_layout.addWidget(barcode_group)
left_layout.addWidget(self.sales_table)

# Right side: Totals and Actions
right_layout = QVBoxLayout()

total_group = QGroupBox("Sale Summary")
total_form = QFormLayout()
self.total_amount_label = QLabel("0.00")
total_form.addRow("Total Amount:", self.total_amount_label)
total_group.setLayout(total_form)

complete_sale_btn = QPushButton("Complete Sale")
complete_sale_btn.clicked.connect(self.complete_sale)
clear_sale_btn = QPushButton("Clear Sale")
clear_sale_btn.clicked.connect(self.clear_sale)

right_layout.addWidget(total_group)
right_layout.addWidget(complete_sale_btn)
right_layout.addWidget(clear_sale_btn)
right_layout.addStretch()

main_layout.addLayout(left_layout, stretch=3) # Left side takes 3/4 of space
main_layout.addLayout(right_layout, stretch=1) # Right side takes 1/4

self.pos_tab.setLayout(main_layout)

#Hashtags: #PointOfSale #BarcodeScanner #UIUX #PyQt5

---

#Step 4: Implementing the Sales Logic

This is the core logic that connects the barcode input to the sales table and the database. When a barcode is entered, we find the drug, add it to the current sale, and update the UI. The "Complete Sale" button will finalize the transaction by updating the database.

Add these methods to the PharmacyApp class:
def add_item_to_sale(self):
barcode = self.barcode_input.text()
if not barcode:
return

drug = db.find_drug_by_barcode(barcode)

if not drug:
QMessageBox.warning(self, "Not Found", "No drug found with this barcode.")
self.barcode_input.clear()
return

drug_id = drug[0]

if drug[3] <= 0: # Check quantity
QMessageBox.warning(self, "Out of Stock", f"{drug[1]} is out of stock.")
self.barcode_input.clear()
return

if drug_id in self.current_sale_items:
# Item already in sale, increment quantity
self.current_sale_items[drug_id]['quantity'] += 1
else:
# Add new item to sale
self.current_sale_items[drug_id] = {
'data': drug,
'quantity': 1
}

self.update_sales_table()
self.barcode_input.clear()

def update_sales_table(self):
self.sales_table.setRowCount(len(self.current_sale_items))
total_sale_amount = 0.0

for row, item in enumerate(self.current_sale_items.values()):
drug_data = item['data']
quantity = item['quantity']
unit_price = drug_data[4]
total_price = quantity * unit_price

self.sales_table.setItem(row, 0, QTableWidgetItem(str(drug_data[0]))) # ID
self.sales_table.setItem(row, 1, QTableWidgetItem(drug_data[1])) # Name
self.sales_table.setItem(row, 2, QTableWidgetItem(str(quantity)))
self.sales_table.setItem(row, 3, QTableWidgetItem(f"{unit_price:.2f}"))
self.sales_table.setItem(row, 4, QTableWidgetItem(f"{total_price:.2f}"))

total_sale_amount += total_price

self.total_amount_label.setText(f"{total_sale_amount:.2f}")

def complete_sale(self):
if not self.current_sale_items:
return

for drug_id, item in self.current_sale_items.items():
db.update_drug_quantity(drug_id, item['quantity'])

QMessageBox.information(self, "Success", f"Sale completed. Total: {self.total_amount_label.text()}")

self.clear_sale()
self.load_inventory_data() # Refresh inventory tab to show new quantities

def clear_sale(self):
self.current_sale_items.clear()
self.update_sales_table()

#Hashtags: #BusinessLogic #PointOfSale #PythonCode #Transaction

---

#Step 5: Results and Discussion

With all the code in place, you have a fully functional pharmacy management system.

How to Use It:
โ€ข Run the main.py script.
โ€ข Go to the "Inventory Management" tab and add a few drugs with unique barcodes.
โ€ข Go to the "Point of Sale" tab. The cursor will be in the barcode input field.
โ€ข Type a barcode of a drug you added and press Enter. The drug will appear in the sales table.
โ€ข Scan the same barcode again. The quantity for that drug in the sales table will increase to 2.
โ€ข Click "Complete Sale". A success message will appear. The sales table will clear.
โ€ข Switch back to the "Inventory Management" tab. You will see that the quantity of the sold drugs has decreased accordingly.
โค2
Discussion and Potential Improvements:
Real Barcode Scanner: This application works directly with a USB barcode scanner. A scanner acts as a keyboard, so when it scans a code, it types the numbers and sends an "Enter" keystroke, which perfectly triggers our returnPressed signal.
Data Integrity: We added a basic check for stock (quantity > 0). A more robust system would check if the quantity in the cart exceeds the quantity in stock before allowing the sale to complete.
Features for a Real Pharmacy: A production-level system would need many more features: prescription management, patient records, batch tracking for recalls, advanced reporting (e.g., top-selling drugs, low-stock alerts), user accounts with different permission levels, and receipt printing.
Database: SQLite is perfect for a single-user, standalone application. For a pharmacy with multiple terminals, a client-server database like PostgreSQL or MySQL would be necessary.

This project provides a solid foundation, demonstrating how to integrate hardware (like a barcode scanner) with a database-backed desktop application to solve a real-world business problem.

#ProjectComplete #SoftwareEngineering #PythonGUI #HealthTech

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
By: @DataScienceN โœจ
โค2
๐Ÿ”ฅ Trending Repository: nano-vllm

๐Ÿ“ Description: Nano vLLM

๐Ÿ”— Repository URL: https://github.com/GeeeekExplorer/nano-vllm

๐Ÿ“– Readme: https://github.com/GeeeekExplorer/nano-vllm#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.4K stars
๐Ÿ‘€ Watchers: 62
๐Ÿด Forks: 949 forks

๐Ÿ’ป Programming Languages: Python

๐Ÿท๏ธ Related Topics:
#nlp #deep_learning #inference #pytorch #transformer #llm


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: glow

๐Ÿ“ Description: Render markdown on the CLI, with pizzazz! ๐Ÿ’…๐Ÿป

๐Ÿ”— Repository URL: https://github.com/charmbracelet/glow

๐Ÿ“– Readme: https://github.com/charmbracelet/glow#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 19.9K stars
๐Ÿ‘€ Watchers: 75
๐Ÿด Forks: 480 forks

๐Ÿ’ป Programming Languages: Go - Dockerfile

๐Ÿท๏ธ Related Topics:
#markdown #cli #hacktoberfest #excitement


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: hacker-scripts

๐Ÿ“ Description: Based on a true story

๐Ÿ”— Repository URL: https://github.com/NARKOZ/hacker-scripts

๐Ÿ“– Readme: https://github.com/NARKOZ/hacker-scripts#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 49K stars
๐Ÿ‘€ Watchers: 2.1k
๐Ÿด Forks: 6.7K forks

๐Ÿ’ป Programming Languages: JavaScript - Python - Java - Perl - Kotlin - Clojure

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: moon-dev-ai-agents

๐Ÿ“ Description: autonomous ai agents for trading in python

๐Ÿ”— Repository URL: https://github.com/moondevonyt/moon-dev-ai-agents

๐ŸŒ Website: https://algotradecamp.com

๐Ÿ“– Readme: https://github.com/moondevonyt/moon-dev-ai-agents#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 2.2K stars
๐Ÿ‘€ Watchers: 100
๐Ÿด Forks: 1.1K forks

๐Ÿ’ป Programming Languages: Python - HTML

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: agenticSeek

๐Ÿ“ Description: Fully Local Manus AI. No APIs, No $200 monthly bills. Enjoy an autonomous agent that thinks, browses the web, and code for the sole cost of electricity. ๐Ÿ”” Official updates only via twitter @Martin993886460 (Beware of fake account)

๐Ÿ”— Repository URL: https://github.com/Fosowl/agenticSeek

๐ŸŒ Website: http://agenticseek.tech

๐Ÿ“– Readme: https://github.com/Fosowl/agenticSeek#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 22.4K stars
๐Ÿ‘€ Watchers: 132
๐Ÿด Forks: 2.4K forks

๐Ÿ’ป Programming Languages: Python - JavaScript - CSS - Shell - Batchfile - HTML - Dockerfile

๐Ÿท๏ธ Related Topics:
#ai #agents #autonomous_agents #voice_assistant #llm #llm_agents #agentic_ai #deepseek_r1


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: LinkSwift

๐Ÿ“ Description: ไธ€ไธชๅŸบไบŽ JavaScript ็š„็ฝ‘็›˜ๆ–‡ไปถไธ‹่ฝฝๅœฐๅ€่Žทๅ–ๅทฅๅ…ทใ€‚ๅŸบไบŽใ€็ฝ‘็›˜็›ด้“พไธ‹่ฝฝๅŠฉๆ‰‹ใ€‘ไฟฎๆ”น ๏ผŒๆ”ฏๆŒ ็™พๅบฆ็ฝ‘็›˜ / ้˜ฟ้‡Œไบ‘็›˜ / ไธญๅ›ฝ็งปๅŠจไบ‘็›˜ / ๅคฉ็ฟผไบ‘็›˜ / ่ฟ…้›ทไบ‘็›˜ / ๅคธๅ…‹็ฝ‘็›˜ / UC็ฝ‘็›˜ / 123ไบ‘็›˜ ๅ…ซๅคง็ฝ‘็›˜

๐Ÿ”— Repository URL: https://github.com/hmjz100/LinkSwift

๐ŸŒ Website: https://github.com/hmjz100/LinkSwift/raw/main/%EF%BC%88%E6%94%B9%EF%BC%89%E7%BD%91%E7%9B%98%E7%9B%B4%E9%93%BE%E4%B8%8B%E8%BD%BD%E5%8A%A9%E6%89%8B.user.js

๐Ÿ“– Readme: https://github.com/hmjz100/LinkSwift#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 7.9K stars
๐Ÿ‘€ Watchers: 26
๐Ÿด Forks: 371 forks

๐Ÿ’ป Programming Languages: JavaScript

๐Ÿท๏ธ Related Topics:
#userscript #tampermonkey #aria2 #baidu #baiduyun #tampermonkey_script #baidunetdisk #tampermonkey_userscript #baidu_netdisk #motrix #aliyun_drive #123pan #189_cloud #139_cloud #xunlei_netdisk #quark_netdisk #ali_netdisk #yidong_netdisk #tianyi_netdisk #uc_netdisk


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
Unlock premium learning without spending a dime! โญ๏ธ @DataScienceC is the first Telegram channel dishing out free Udemy coupons dailyโ€”grab courses on data science, coding, AI, and beyond. Join the revolution and boost your skills for free today! ๐Ÿ“•

What topic are you itching to learn next? ๐Ÿ˜Š
https://www.tgoop.com/DataScienceC ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
๐Ÿ”ฅ Trending Repository: pytorch

๐Ÿ“ Description: Tensors and Dynamic neural networks in Python with strong GPU acceleration

๐Ÿ”— Repository URL: https://github.com/pytorch/pytorch

๐ŸŒ Website: https://pytorch.org

๐Ÿ“– Readme: https://github.com/pytorch/pytorch#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 94.5K stars
๐Ÿ‘€ Watchers: 1.8k
๐Ÿด Forks: 25.8K forks

๐Ÿ’ป Programming Languages: Python - C++ - Cuda - C - Objective-C++ - CMake

๐Ÿท๏ธ Related Topics:
#python #machine_learning #deep_learning #neural_network #gpu #numpy #autograd #tensor


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: LocalAI

๐Ÿ“ Description: ๐Ÿค– The free, Open Source alternative to OpenAI, Claude and others. Self-hosted and local-first. Drop-in replacement for OpenAI, running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more. Features: Generate Text, Audio, Video, Images, Voice Cloning, Distributed, P2P and decentralized inference

๐Ÿ”— Repository URL: https://github.com/mudler/LocalAI

๐ŸŒ Website: https://localai.io

๐Ÿ“– Readme: https://github.com/mudler/LocalAI#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 36.4K stars
๐Ÿ‘€ Watchers: 241
๐Ÿด Forks: 2.9K forks

๐Ÿ’ป Programming Languages: Go - HTML - Python - JavaScript - Shell - C++

๐Ÿท๏ธ Related Topics:
#api #ai #mcp #decentralized #text_generation #distributed #tts #image_generation #llama #object_detection #mamba #libp2p #gemma #mistral #audio_generation #llm #stable_diffusion #rwkv #musicgen #rerank


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: PageIndex

๐Ÿ“ Description: ๐Ÿ“„๐Ÿง  PageIndex: Document Index for Reasoning-based RAG

๐Ÿ”— Repository URL: https://github.com/VectifyAI/PageIndex

๐ŸŒ Website: https://pageindex.ai

๐Ÿ“– Readme: https://github.com/VectifyAI/PageIndex#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 3.1K stars
๐Ÿ‘€ Watchers: 24
๐Ÿด Forks: 243 forks

๐Ÿ’ป Programming Languages: Python - Jupyter Notebook

๐Ÿท๏ธ Related Topics:
#ai #retrieval #reasoning #rag #llm


==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
๐Ÿ”ฅ Trending Repository: opentui

๐Ÿ“ Description: OpenTUI is a library for building terminal user interfaces (TUIs)

๐Ÿ”— Repository URL: https://github.com/sst/opentui

๐ŸŒ Website: https://opentui.com

๐Ÿ“– Readme: https://github.com/sst/opentui#readme

๐Ÿ“Š Statistics:
๐ŸŒŸ Stars: 3.3K stars
๐Ÿ‘€ Watchers: 19
๐Ÿด Forks: 122 forks

๐Ÿ’ป Programming Languages: TypeScript - Zig - Go - Tree-sitter Query - Shell - Vue

๐Ÿท๏ธ Related Topics: Not available

==================================
๐Ÿง  By: https://www.tgoop.com/DataScienceM
2025/11/04 02:28:39
Back to Top
HTML Embed Code: